
Exam problems for the course
Statistical physics and thermodynamics

fall semester 2006.

These are hand in assignments for the course in ”Statistical physics and thermo-
dynamics” given at Masaryk University at the fall semester 2006. They consist
the first part of the course requirements, the second part being an oral exam.
The solutions to the problems should be handed in minimum one week before
the oral exam. The answers to the problems can be written in English or Czech,
they can be written by hand or on the computer but they should be legible. Do
not leave out any part of the calculation! Motivate your assump-
tions and approximations carefully. As a minimum requirement to pass
the course I have 24 points but more points of course gives higher grades. Please
observe that if you hand in just enough problems to get 24 points, chances are
that you will have some mistake somewhere and then you will not pass the
exam!

1. Consider a system consisting of two particles, each of which can be in any
one of three quantum states of respective energies, 0, ε and 3ε. The system
is in contact with a heat reservoir at temperature T . (2p)

(a) Write an expression for the partition function Z if the particles obey
classical MB statistics and are considered distinguishable.

(b) What is Z if the particles obey BE statistics?

(c) What is Z if the particles obey FD statistics?

2. A simple harmonic one-dimensional oscillator has energy levels given by
En = (n + 1

2 )h̄ω, where ω is the characteristic frequency of the oscillator
and the quantum number n can assume the possible integral values n =
0, 1, 2, 3, . . .. Suppose that such an oscillator is in thermal contact with a
heat reservoir at temperature T . (3p)

(a) Find the ratio of the probability of the oscillator being in the first
excited state to the probability of its being in the ground state.

(b) Find the mean energy of the oscillator as a function of the tempera-
ture T.

3. For ideal gases in two dimensions, find (6p)

(a) The heat capacity at constant area in the high-temperature limit for
both the Fermi and Bose cases.

(b) The heat capacity at constant area in the low-temperature limit for
the Fermi case.

4. Find the high- and low-temperature limits of the heat capacity of a Debye
solid in two dimensions. (4p)

5. A system consists of N very weakly interacting particles at a temperature
T sufficiently high so that classical statistical mechanics is applicable.
Each particle has mass m and is free to perform one-dimensional oscilla-
tions about its equilibrium position. Calculate the heat capacity of this
system or particles at this temperature in each of the following cases: (4p)
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(a) The force effective in restoring each particle to its equilibrium posi-
tion is proportional to its displacement x from this position.

(b) The restoring force is proportional to x2.

6. Assume the following highly simplified model for calculating the specific
heat of graphite, which has a highly anisotropic crystalline layer structure.
Each carbon atom in this structure can be regarded as performing simple
harmonic oscillations in three dimensions. The restoring forces in direc-
tions parallel to a layer are very large; hence the natural frequencies of
oscillations in the x and y directions lying within the plane of a layer are
both equal to a value ω|| which is so large that h̄ω|| is much greater than
the temperature corresponding to 300K. On the other hand, the restor-
ing force perpendicular to a layer is quite small; hence the frequency of
oscillation ω⊥ of an atom in the z direction perpendicular to a layer is so
small that h̄ω⊥ is much smaller than the energy corresponding to 300K.
On the basis of this model, what is the molar specific heat (at constant
volume) of graphite at 300K. (4p)

7. Electromagnetic radiation at temperature Ti fills a cavity of volume V . If
the volume of the thermally insulated cavity is expanded quasi statically
to a volume 8V , what is the final temperature Tf? (4p)

8. Use the Debye approximation to find the equation of state for a solid; i.e.
find the pressure p̄ as a function of V and T . What are the limiting cases
valid when T � θD and when T � θD? Express your answer in terms of
the quantity

γ ≡ − V

θD

dθD

dV
(1)

Assume that γ is a constant, independent of temperature. (It is called the
Grüneisen constant.) Show that the coefficient of thermal expansion α is
then related to γ by the relation

α =
1
V

(
∂V

∂T

)
p

= κ

(
∂p

∂T

)
V

= κγ
CV

V
(2)

where CV is the heat capacity of the solid and κ is the compressibility.
(4p)

9. Assume the existence of a Bose gas with dispersion relation E = A|k|n
where n is any natural number. If the number of particles is not conserved,
compute the dependence of the specific heat CV on the temperature T .
(4p)

10. Assume that we have a classical ideal gas where the particles also carry an
internal degree of freedom. So apart from carrying kinetic energy p2/2m
they also carry internal energy ±∆. Show how one could measure delta
by measuring the heat capacity. (4p)

11. Calculate the magnetic susceptibility of a free electron gas! In an electron
gas there two competing effects that will decide how the induced magnetic

2



field will be when one applies an external magnetic field. The electrons
themselves carry spin to which there is a magnetic moment associated.
The magnetic moments tend to align with the magnetic field thus creating
an induce magnetic moment in the same direction as the applied magnetic
field. This is paramagnetic behavior. However, since the electrons are
themselves charged they will move in circles in the magnetic field which
will create a current that tends to reduce the applied external magnetic
field. This is diamagnetic behavior. Calculate the Landau potential for
these two problems independently and calculate the susceptibility χ it
gives rise to according to the formula

M = −
(

∂Ω
∂H

)
T,V,µ

(3)

χ =
∂M

∂H
= − ∂2Ω

∂H2
(4)

Start from the formula for the Landau potential using the ideal gas ap-
proximation

Ω = −T
∑

a

ln
(
1 + e(Ea−µ)/T

)
(5)

In the paramagnetic case, the states have different energy according to if
the spin is up or down

Ea =
p2

2m
± βH (6)

where β = |e|h̄
2mc is the Bohr magneton and H is the external magnetic field.

In the diamagnetic case, as was shown in class, the sum over states can
be exchanged with

∑
a

→
∞∑

n=0

∫
dpz2

V

(2πh̄)2
|e|H

c
(7)

where the energy of the states is given by

E = h̄ω(n +
1
2
) +

p2
z

2m
(8)

To get explicit results, use the high temperature approximation to lowest
order and use what you know for the free electron gas without a magnetic
field. Is the gas paramagnetic or diamagnetic? (8p)
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