
Hand-in assignments in Quantum Mechanics, spring
semester 2004.

These are hand in assignments for the course in Quantum mechanics at the
Masaryk University in the spring of year 2004. They are the first part of
the requirement of the course, the second being an oral exam. The problems
should be handed in minimum one week before the oral exam. Do not leave
out any part of the calculations and motivate your assumptions
and approximations carefully. You my answer in Czech or English. The
required minimum number of points is 30.

Propagators and Path Integrals

1. A model of a moving wave-packet in 1 dimension is given by the wave-
function

N
∫
dpe−

a
2
(p−p0)2 |p〉

where a is a constant and N is the normalization factor. Determine N
and use the propagator of a free particle to find how the packet moves
in time. Interpret your result! (3p)

2. Find the momentum space propagator 〈p′, t′|p, t〉 for a free 1 dimen-
sional particle using the time evolution operator. Show how to get the
configuration space propagator

〈x′, t′|x, t〉 =

√
m

2πih̄∆t
e

im
2h̄

(x′−x)2

∆t

from the expression from the momentum space propagator. (3p)

3. Use the identity (
1√

1− ζ2

)
exp

[
− (ξ2 + η2 − 2ξηζ)

(1− ζ2)

]

= exp
[
−(ξ2 + η2)

]∑
n=0

(
ζn

2nn!

)
Hn(ξ)Hn(η)

to find the propagator for the 1 dimensional harmonic oscillator using
the “old” method (i.e. express the initial wave-function in terms of
energy eigenfunctions and then use that the time evolution for these
states is trivial). (4p)
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4. Find the time evolution of the 1 dimensional harmonic oscillator state

ψ(x) =
(
mω

πh̄

) 1
4

e−
mω(x−x0)2

2h̄ ,

using the harmonic oscillator propagator

K(x′, t′;x, t) =

√
mω

2πih̄ sinω∆t
×

exp
{(

imω

2h̄ sinω∆t

) (
(x′2 + x2) cosω∆t− 2x′x

)}
Interpret your result! (5p)

5. The propagator for a charged particle in a homogeneous electric field
E can be written as

K(x′, t′;x, t) =

√
m

2πih̄ (t′ − t)
×

exp

{
im

2h̄

(x′ − x)2

t′ − t
+
iE

2h̄
(x′ + x)(t′ − t)− i

24

E2

h̄m
(t′ − t)3

}
.

Find the time evolution of a wavepacket

ψ(x, t = 0) =
(

2

π

) 1
4

e−x2

.

Interpret your result! Does it agree with your intuition? (5p)

Angular momentum

1. The Hamiltonian for a spin 1 system is given by

Ĥ = AĴ2
z +B

(
Ĵ2

x − Ĵ2
y

)
.

Solve this problem exactly to find the normalized energy eigenstates
and eigenvalues. A spin dependent Hamiltonian of this kind actually
appears in crystal physics. (2p)

2. An angular momentum eigenstate |j,m = mmax = j〉 is rotated by an
infinitesimal angle ε about the y-axis. By using the angular momentum
operators, obtain an expression for the probability for the new rotated
state to be found in the original state up to terms of order ε2. (2p)
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3. An atom has total angular momentum j = 3
2

and z-component m =
3
2
. Calculate the probabilities to find the system with any particular

angular momentum component along an axis leaning at an angle θ with
respect to the z-axis. (4p)

4. A particle in a spherically symmetrical potential is known to be in an
eigenstate of L2 and Lz with eigenvalues h̄2l(l+1) and mh̄, respectively.
Prove that the expectation values between |lm〉 states satisfy

〈Lx〉 = 〈Ly〉 = 0, 〈L2
x〉 = 〈L2

y〉 =
l(l + 1)h2 −m2h̄2

2

(2p)

5. Calculate the explicit form of the spin 1 representation of the rotation
operator R̂x(φ) in two ways. First by exponentiating the explicit form
of Ĵx and second by combining the rotation matrices of two spin 1

2

particles. (4p)

6. a) Evaluate

j∑
m=−j

m
∣∣∣〈j,m| R̂y(θ) |j,m′〉

∣∣∣2 ,
for any j; then check your answer for j = 1

2
.

b) Prove, for any j, that

j∑
m=−j

m2
∣∣∣〈j,m| R̂y(θ) |j,m′〉

∣∣∣2 =
1

2
j(j + 1) sin2 θ +

m′2

2

(
3 cos2 θ − 1

)
.

(4p)

7. We are to add angular momenta j1 = 2 and j2 = 1
2

to form j = 3
2

and 5
2

states. Express all (ten) j,m eigenkets in terms of |j1j2;m1m2〉〉. (4p)

8. The wave function of a particle subjected to a spherically symmetrical
potential V (r) is given by

ψ(x) = (x+ y + 3z)f(r).
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a) Is ψ an eigenfunction of L2? If so, what is the l-value? If not, what
are the possible values of l we may obtain when L2 is measured?

b) What are the probabilities for the particle to be found in various
ml states?

c) Suppose it is known somehow that ψ(x) is an energy eigenfunction
with eigenvalue E. Indicate how we may find V (r).

(4p)

9. Consider a spin-less particle bound to a fixed center by a central force
potential. Relate, as much as possible, the matrix elements

〈n′, l′,m′| ∓ 1√
2
(x± iy) |n, l,m〉 and 〈n′, l′,m′| z |n, l,m〉

using only the Wigner-Eckart theorem. Make sure to state under what
conditions the matrix elements are non-vanishing. (6p)

10. The expectation value

Q = e 〈j,m = j| (3z2 − r2) |j,m = j〉 ,

is known as the quadrupole moment. Evaluate

〈j,m′| (x2 − y2) |j,m = j〉 ,

(where m′ = j, j−1, . . .) in terms of Q and appropriate Clebsch-Gordan
coefficients. (6p)

Scattering theory

1. Determine, using the Born approximation, the differential and the total
scattering cross-section in the low energy limit for a spherical potential
well

V =

{
− |V0| for r < a
0 for r > a.

(4p)

2. Determine in the Born approximation the differential and the total
scattering cross-section for the potential V = V0

r
e−

r
a . (4p)
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3. Consider a potential

V =

{
0 for r > R
V0 for r < R

where V0 is a positive or negative constant. Using the method of partial
waves, show that for |V0| � E = h̄2k2

2m
and kR� 1 the differential cross

section is isotropic and that the total cross section is given by

σtot =
(

16π

9

)
m2V 2

0 R
6

h̄4 .

Suppose the energy is raised slightly. Show that the angular distribu-
tion can then be written as

dσ

dΩ
= A+B cos(θ)

Obtain an approximate expression for B
A
. (6p)

4. Use the method of partial waves to show that in scattering of low-
energy particles on a spherical potential well of depth −V0 there is a
special value of V0 for which the phase shift of the l = 0 partial wave is
π while higher-order phase shifts are negligibly small. What happens
to the scattering cross-section in this case? This effect was observed
by Ramsauer in the scattering of low-energy (0.7 eV) electrons by rare-
gas atoms. Using an atomic radius of 10−10 m, what must be the
depth (= V0) of the effective potential well for helium, to explain the
observations of Ramsauer? (6p)

5. Consider the scattering of a particle by a repulsive delta function shell
potential

V (r) =
h̄2γ

2m
δ(r −R),

a) Set up an equation that determines the s-wave phase shift δ0 as a

function of k (remember that E = h̄2k2

2m
).

b) Assume now that γ is very large,

γ � 1

R
, k.
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Show that if tan kR is not close to zero, the s-wave phase shift re-
sembles the hard-sphere result discussed in the lectures. Show also
that for tan kR close to (but not exactly equal to) zero, resonance
behavior is possible; that is, cot δ0 goes through zero from the pos-
itive side as k increases. Determine approximately the positions
of the resonances keeping terms of order 1

γ
.

(6p)
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