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1 Propagators and Path integrals

1.1 Time evolution in Quantum mechanics

Time evolution in quantum mechanics is given by the Schrödinger equation

Ĥ|ψ〉 = ih̄
∂

∂t
|ψ〉. (1)
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The way we are used to solve this is to find a basis of eigenstates of the
Hamiltonian, i.e. to solve the equation

Ĥ|ψn〉 = En|ψn〉. (2)

Each of these states evolve very simply with time since

ih̄
∂

∂t
|ψ〉 = Ĥ|ψ〉 = En|ψn〉, (3)

so that

|ψn(t)〉 = e−
i
h̄

Ent|ψn〉. (4)

Since |ψn〉 is a complete basis, we can express any wave function as a linear
combination of the |ψn〉 states

|ψ〉 =
∑
n

cn|ψn〉, (5)

and since we know how each of the basis states evolve in time, we know the
full time evolution

|ψ(t)〉 =
∑
n

cne
− i

h̄
Ent|ψn〉. (6)

This method is not always possible to use however. For instance, if the
Hamiltonian itself Ĥ(t) depends on time we cannot solve equation (2) and
we will have to find a different method. It is also possible that this method
does not give the simplest description of time evolution. For instance if the
initial wave function is very different from the base states.

Let us now look for a more general solution to (1). Infinitesimally we
may write it as

Ĥ(t)|ψ(t)〉 = ih̄
|ψ(t + ∆t)〉 − |ψ(t)〉

∆t
. (7)

Or, turning it around

|ψ(t + ∆t)〉 = |ψ(t)〉 − i

h̄
Ĥ(t)∆t|ψ(t)〉 =

(
1− i

h̄
Ĥ(t)∆t

)
|ψ(t)〉. (8)

We see that we may define an operator

Û(t+ ∆t, t) = 1− i

h̄
Ĥ(t)∆t, (9)
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which evolves arbitrary wave functions from time t to time t+∆t. Notice that
the only approximation we made was to assume that the time increment was
infinitesimal. In particular, the Hamiltonian was arbitrary. We can observe
that

lim
∆t→0

Û(t+ ∆t, t) = 1, (10)

so that the time evolution is continuous. We also see that Û is a unitary
operator. That is, Û †Û = Û Û † = 1 (to lowest order in ∆t). This has to be
since we do not want that probability density is lost in the time evolution
(that is, independently of what the physical situation is and what the particle
does, the probability of finding it anywhere in space should always be one).
Mathematically we write this as

1 = 〈ψ(t + ∆t)|ψ(t + ∆t)〉 = 〈ψ(t)|Û †U |ψ(t)〉. (11)

We can rewrite Û in such a way that the unitarity becomes manifest. Namely,
for the infinitesimal time evolution we have

Û(t+ ∆t, t) = 1− i

h̄
Ĥ(t)∆t ≈ e−

i
h̄

Ĥ(t)∆t. (12)

This is manifestly unitary since Ĥ is hermitian. This we will take as the
definition of the infinitesimal time evolution operator. To be able to handle
arbitrary time evolutions we will use that any arbitrary time interval can
be divided into infinitesimal pieces. We therefore define the arbitrary time
evolution operator Û(t′, t) by dividing the time interval t′ − t into N pieces.
Letting N go to infinity makes the intervals arbitrarily small so in each
interval the time evolution operator can be taken in its infinitesimal form.
Thus we get:

Û(t′, t) = lim
N→∞

Û(t′, tN−1)Û(tN−1, tN−2) . . . Û(t2, t1)Û(t1, t), (13)

ti = t+
t′ − t

N
i,

and this is the most general definition of the time evolution operator. It
works for arbitrary Hamiltonians and in the following we will evaluate it in
various special cases where it simplifies.

The problem of taking the product in (13) is the fact that the Ĥ operator
appearing in each Û is taken at a different time. If the Hamiltonians at
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different times do not commute we cannot perform the product of the Û
operators in a simple form. A good exercise to see why this is so is to try to
derive the Baker-Campbell-Hausdorff formula for two operators Â and B̂

eÂeB̂ = eÂ+B̂+ 1
2 [Â,B̂]+ 1

12 [Â,[Â,B̂]]+ 1
12 [[Â,B̂]B̂]+.... (14)

Only in the special case where the Hamiltonians at different times commute
with themselves can we simplify the expression (13) for Û as follows

Û(t′, t) = lim
N→∞

e−
i
h̄

Ĥ(tN−1)∆t− i
h̄

Ĥ(tN−2)∆t−...− i
h̄

Ĥ(t1)∆t− i
h̄

Ĥ(t)∆t

= e−
i
h̄

∫ t′

t
ds Ĥ(s). (15)

This is such a nice and compact form that one would like to use it for the
general case. This we can do if we define a new operator T called the time
ordering operator. T acting on a product of operators always reorders them
so that operators evaluated at earlier times stands to the right of operators
evaluated at later times. Using T we can write the general expression for Û
as

Û(t′, t) = T
[
e−

i
h̄

∫ t′

t
ds Ĥ(s)

]
. (16)

The appearance of T [?] in this expression tells us that we have to write Û in
such a way that all operators taken at earlier times are written to the right of
operators at later times, just as is manifestly done in the original definition
(13).

1.2 The propagator

Now let us try to use the time evolution operator in some specific cases. The
wave function at arbitrary time t is given by

|ψ(t)〉 = Û(t, t′)|ψ(t′)〉 (17)

In coordinate representation this looks like

ψ(x, t) = 〈x|ψ(t)〉 = 〈x|Û(t, t′)|ψ(t′)〉

=
∫
d3x′ 〈x|Û(t, t′)|x′〉 〈x′|ψ(t′)〉

=
∫
d3x′ K(x, t;x′, t′) ψ(x′, t′), (18)
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where we have inserted 1 in the form
∫
d3x′|x′〉〈x′| and defined the configu-

ration space propagator

K(x, t;x′, t′) = 〈x|Û(t, t′)|x′〉. (19)

The name propagator is chosen because K(x, t;x′, t′) takes the wave function
at time t′ and propagates it to time t and space point x. It works very much
like in electrodynamics where we can use the knowledge of the potential
(and its normal derivative) on the border of a region to find the potential
everywhere in this region with the help of a Green function. In our case
the border is the space time surface at t′, the potential is the wave function
and the Green function is the propagator. We shall see later that this is no
coincidence, K is indeed the Green function for the Schrödinger operator.

In the special case where the initial wave function is completely localized
at a point, ψ(x′, t′) = δ(3)(x′ − x0) we have

ψ(x, t) =
∫
d3x′ K(x, t;x′, t′) δ(3)(x′ − x0) = K(x, t;x0, t

′), (20)

so we see that a direct physical interpretation of the propagator is that it is
the wave function of a particle which was completely localized at the initial
time.

Since the propagator has the interpretation as a wave function, it has to
fulfill the Schrödinger equation. This we now prove in the special case that
the Hamiltonian has the form

Ĥ =
p̂2

2m
+ V (x̂) (21)

First we notice that for infinitesimal ∆t

K(x, t+ ∆t;x′, t′) = 〈x|Û(t+ ∆t, t′)|x′〉 = 〈x|Û(t+ ∆t, t)Û(t, t′)|x′〉. (22)

Since the leftmost time evolution operator is infinitesimal, we know how to
evaluate it

Û(t+ ∆t, t) = 1− i

h̄
Ĥ(t)∆t. (23)

Inserting the identity operator we have

K(x, t+ ∆t;x′, t′) =
∫
d3y 〈x|1− i

h̄
Ĥ(t)∆t|y〉 〈y|Û(t, t′)|x′〉

=
∫
d3y 〈x|1− i

h̄
Ĥ(t)∆t|y〉 K(y, t;x′, t′). (24)
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Using the explicit form of the Hamiltonian we can compute

〈x|Ĥ|y〉 = − h̄2

2m
(∇y)

2δ(3)(x− y) + V (y)δ(3)(x− y), (25)

where we have use the fact that

〈x|x̂|y〉 = xδ(3)(x− y) = yδ(3)(x− y),

〈x|p̂|y〉 = −ih̄∇xδ
(3)(x− y) = ih̄∇yδ

(3)(x− y). (26)

Inserting this we get

K(x, t+ ∆t;x′, t′) =
∫
d3y δ(3)(x− y) K(y, t;x′, t′)

− i

h̄
∆t

∫
d3y

(
− h̄2

2m
(∇y)

2δ(3)(x− y) + V (y)δ(3)(x− y)

)
K(y, t;x′, t′). (27)

After integrating by parts we can use the delta functions to perform the
integral

K(x, t+ ∆t;x′, t′) = K(x, t;x′, t′)

− i

h̄
∆t

(
− h̄2

2m
(∇x)

2 + V (x)

)
K(x, t;x′, t′), (28)

or, reshuffling the terms a little bit

ih̄

∆t
(K(x, t+ ∆t;x′, t′)−K(x, t;x′, t′)) =

(
− h̄2

2m
(∇x)

2 + V (x)

)
K(x, t;x′, t′),(29)

which for infinitesimal ∆t is the same as

ih̄
∂

∂t
K(x, t;x′, t′) =

(
− h̄2

2m
(∇x)

2 + V (x)

)
K(x, t;x′, t′), (30)

in which we recognize the Schrödinger equation as we set out to show above.
We therefore see that K(x, t;x′, t′) is a solution to the Schrödinger equation
with boundary conditions

lim
t→t′

K(x, t;x′, t′) = δ(3)(x− x′). (31)

If we require that the propagator should be zero if t < t′ (there is no evolution
backwards in time) we can define it as

K̃(x, t;x′, t′) = K(x, t;x′, t′)Θ(t− t′), (32)
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where Θ is a step function. This new K̃ satisfies the equation(
ih̄
∂

∂t
− Ĥ

)
K̃(x, t;x′, t′) =

[(
ih̄
∂

∂t
− Ĥ

)
K(x, t;x′, t′)

]
Θ(t− t′)

+ K(x, t;x′, t′) ih̄
∂

∂t
Θ(t− t′) (33)

= ih̄K(x, t;x′, t′)δ(t− t′)

= ih̄δ(3)(x− x′)δ(t− t′),

where we used that fact that the derivative of the step function is a delta
function and that K evaluated at zero time-step is a delta function in space.
This shows that K̃ is indeed a Green function of the Schrödinger differential
operator ih̄ ∂

∂t
− Ĥ.

As an illustration, let us evaluate the propagator for the one dimensional
free particle. From the definition we have

K(x, t;x′, t′) = 〈x|T
[
e−

i
h̄

∫ t

t′ dsĤ(s)
]
|x′〉, (34)

where now Ĥ is the Hamiltonian for a free particle Ĥ = p̂2

2m
. Since this

Hamiltonian does not depend on time it commutes with itself for all times.
That means that the T operator acts trivially and that the integral in the
exponential can be written

∫ t
t′ dsĤ(s) = (t − t′)Ĥ. Since the Hamiltonian

contains p̂ it is useful to insert a complete set of momentum eigenstates

K(x, t;x′, t′) =
∫ ∞

−∞
dp 〈x|e−

i
h̄

Ĥ(t−t′)|p〉 〈p|x′〉

=
∫ ∞

−∞
dp e−

i
h̄
(t−t′) p2

2m 〈x|p〉 〈p|x′〉, (35)

and using the explicit form of the wave function 〈x|p〉 = 1√
2πh̄

e
i
h̄

px we get

K(x, t;x′, t′) =
∫ ∞

−∞

dp

2πh̄
e−

i
h̄
(t−t′) p2

2m
+ i

h̄
p(x−x′). (36)

The integral over p is not really well defined since the integrand does not fall
off for large p. It is possible to define it correctly mathematically in various
ways. For instance, we can make the integral convergent by defining

Knew(x, t;x′, t′) = lim
ε→0

Kold(x, t− iε;x′, t′). (37)
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For each non-zero ε the integrand falls off like a Gaussian so the integral is
convergent and gives us

K(x, t− iε;x′, t′) =
∫ ∞

−∞

dp

2πh̄
e−

ε
2mh̄

p2− i
h̄
(t−t′) p2

2m
+ i

h̄
p(x−x′)

= e
− m(x−x′)2

2h̄(i(t−t′)+2mε)

∫ ∞

−∞

dp

2πh̄
e
− i(t−t′)+2mε

2mh̄

(
p−i

m(x−x′)
i(t−t′)+2mε

)2

. (38)

Shifting the integration variable p gives a Gaussian integral of the type∫ ∞

−∞
dxe−ax2

=

√
π

a
, (39)

and using this we finally have

K(x, t− iε;x′, t′) =

√
m

2πh̄(i(t− t′) + 2mε)
e
− m(x−x′)2

2h̄(i(t−t′)+2mε) . (40)

In this expression we can without worries take the limit ε → 0 to get the
configuration space propagator for the one dimensional free particle

K(x, t;x′, t′) =

√
m

2πih̄(t− t′)
e

im(x−x′)2

2h̄(t−t′) . (41)

It is interesting to try to interpret this propagator physically since we
know that K(x, t, ; 0, 0) should be the wave function for a particle which at
t = 0 was completely localized at x = 0. Since |K(x, t; 0, 0)|2 is the same ev-
erywhere in space it means that at any instant after t = 0 the probability to
find the particle anywhere in space is the same!! This can be understood since
in non-relativistic physics there is no maximum velocity. When we try to lo-
calize a particle we need to use waves of all possible momenta, even infinitely
high. These wave will of course propagate arbitrarily far in infinitesimal time
giving us the above result. In relativistic quantum mechanics the propagator
is modified in such a way that nothing can propagate faster than light so
that the probability density is always zero outside the light cone.

1.3 The propagator as a Green function

Well, if the propagator is a Green function we must be able to calculate it
using standard methods. We now illustrate this on exactly the same problem
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as in the previous section, namely the configuration space propagator for the
one dimensional free particle. The general equation for the Green function
of an operator gives(

ih̄
∂

∂t
− Ĥ

)
K(x, t; 0, 0) = ih̄δ(x)δ(t), (42)

where we have put x′ and t′ to zero without loss of generality. In our case

we have to choose the Hamiltonian Ĥ = − h̄2∂2
x

2m
so we have(

ih̄
∂

∂t
+
h̄2∂2

x

2m

)
K(x, t; 0, 0) = ih̄δ(x)δ(t). (43)

Such equations are very nicely solved using Fourier transforms. Namely,
write the Fourier transform of K(x, t) as L(k, ω) such that

K(x, t) =
∫ dk dω

(2π)2
L(k, ω)eikx−iωt, (44)

we can write the left hand side of (43) as(
ih̄
∂

∂t
+
h̄2∂2

x

2m

)∫ dk dω

(2π)2
L(k, ω) eikx−iωt (45)

=
∫ dk dω

(2π)2

(
h̄ω − h̄2k2

2m

)
L(k, ω) eikx−iωt. (46)

Using that we know how the Fourier transform of a delta function looks like
(δ(t) =

∫ dω
2π
e−iωt) we can then write the right hand side of (43) as

ih̄
∫ dk dω

(2π)2
eikx−iωt. (47)

We see that the two sides are equal if and only if(
h̄ω − h̄2k2

2m

)
L(k, ω) = ih̄, (48)

or, if you wish

L(k, ω) =
ih̄

h̄ω − h̄2k2

2m

. (49)
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Well, now we have L(k, ω) but since it is just the Fourier transform of K(x, t)
we just need to transform back to get K(x, t). That should be a piece of cake!
Let us try. Using (44) we can write

K(x, t) =
∫ dk dω

(2π)2

ih̄

h̄ω − h̄2k2

2m

eikx−iωt

=
∫ ∞

−∞

dk

2π
eikx

(∫ ∞

−∞

dω

2πi

−1

ω − h̄k2

2m

e−iωt

)
. (50)

We will do the integral over ω using contour methods.
In order to be able to write the integral as a sum over residues, using the

Cauchy theorem, we need to have a closed contour. This we get by closing
the contour either with a half circle in the upper half plane or with a half
circle in the lower half plane as shown in picture 1 We can then write the

Figure 1: The possible contours

closed contour I as the sum of the integral in which we are interested I1 and
the integral over the half circle I2 (or I ′2). Since I is given by the integral
around a closed contour it can be calculated simply as the sum over the
residues of the poles enclosed by the contour. Then we have I1 = I − I2 and
since we will now show that I2 = 0 we in fact have that I1 = I.

To show that I2 = 0 we need to estimate the integral. The contour is
over values of ω with |ω| constant and large (going to infinity even). arg(ω)
varies between 0 and π for I2 and 0 and −π for I ′2. To make the estimate for
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this contour we write∣∣∣∣∣ 1

ω − h̄k2

2m

∣∣∣∣∣ ≈ 1

|ω|
+O

(
1

|ω|2

)
,∣∣∣e−iωt

∣∣∣ =
∣∣∣e−i|ω|(cos θ+i sin θ)t

∣∣∣ = ∣∣∣e|ω|t sin θ
∣∣∣ , (51)

dω = ωidθ,

which means that we can estimate the integral as∫
C2

dω

2πi

1

ω − h̄k2

2m

e−iωt ≤
∫ dθ

2πi

|ω|
|ω|

e|ω|t sin θ. (52)

Notice that |ω| is really a constant all through the calculation. Furthermore,
this constant we will take to infinity (corresponding to an infinitely large half
circle). The integrand is therefore very much suppressed if we choose θ so
that |ω| t sin(θ) < 0. In other words, for t > 0 we have to choose −π ≤ θ ≤ 0
corresponding to I ′2 and for t < 0 we have to choose 0 ≤ θ ≤ π corresponding
to I2.

There is one more problem with the integral I1 which we skipped over in
the previous discussion. Namely, there is a pole (singularity) of the integrand
for ω = h̄k2

2m
. The usual way to avoid this problem is to let the integration

contour pass the singularity in a small circle. But there are two ways we
can do this. Either above or below. Which is the correct way? Physics will
have to tell us. Namely, from the four possible contours in figure 2 we see
immediately that two of them are zero (since they do not enclose any poles).
If we choose to shift the contour down we get a result which is non-zero
only for t < 0 (this is not what we want, it would mean propagation only
backwards in time) but if we choose to shift the contour up we get a result
which is non-zero only for t > 0 (which is exactly what we want since this is
how we defined the Green function in the first place). The fact that physics
tells us that we always have to shift the contour up can be nicely encoded in
the way we write the momentum space propagator. Namely, write

L(k, ω) =
i

ω − h̄k2

2m
+ iε

, (53)

where ε is an arbitrary small real number which we always let go to zero after
the calculation. The fact that ε appears shifts the location of the pole from
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Figure 2: All possible contours

ω = h̄k2

2m
to ω = h̄k2

2m
− iε which means that the contour will not meet the pole

and will naturally pass over it.
Finally, let us perform the integral in the case t > 0 which means that

we have to choose to close the contour in the lower half plane so that there
will be an extra minus from the clockwise orientation of the contour

−
∫ ∞

−∞

dω

2πi

1

ω − h̄k2

2m
+ iε

eiωt = −
∮ dω

2πi

1

ω − h̄k2

2m
+ iε

eiωt =

lim
ε→0

e
−i

(
h̄k2

2m
−iε

)
t
= e−

i
h̄

h̄2k2

2m
t, (54)

and inserting this in (50) we get

K(x, t) =
∫ ∞

−∞

dk

2π
eikxe−

i
h̄

h̄2k2

2m
t = {p = h̄k} =

∫ ∞

−∞

dp

2πh̄
e

i
h̄

pxe−
i
h̄

p2

2m
t, (55)

in which we recognize (36) which is indeed the expression for the one dimen-
sional propagator that we derived independently in the previous section.
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1.4 The spreading of a wave packet

Let us now try to calculate a more physical example using the one-dimensional
free particle propagator. We saw previously that the sharply localized par-
ticle will spread out over all space infinitely fast. What about the perhaps
more physical case where the initial particle (at time t = 0 say) is “smoothly”
localized by a Gaussian “blob”

ψi(x, t = 0) =
(

2

π

) 1
4

e−x2

. (56)

The wave function at any later time is now given by

ψ(x, t) =
∫
dx′K(x, t;x′, t′ = 0)ψi(x

′), (57)

where K(x, t;x′, t′) is the propagator for the physical situation we are in-
terested in (in our case the free one-dimensional particle). Introducing the
notation α = m

2h̄t
we write

ψ(x, t) =
(

2

π

) 1
4
∫
dx′
√
α

iπ
eiα(x−x′)2e−x′2 =(

2

π

) 1
4
√
α

iπ
eiαx2

∫
dx′e−(1−iα)[x′2+ 2iα

1−iα
xx′], (58)

which, completing the squares in the exponential becomes

ψ(x, t) =
(

2

π

) 1
4
√
α

iπ
eiαx2

∫
dx′e

−(1−iα)

[
(x′+ iα

1−iα
x)2+ α2x2

(1−iα)2

]
. (59)

Shifting the integration variable x̃ = x′+ iα
1−iα

x we can perform the integration
with the result

ψ(x, t) =
(

2

π

) 1
4
√
α

iπ

√
π

1− iα
eiαx2

e
α2x2

(1−iα)2 =

(
2

π

) 1
4

√
iα

iα− 1
e−

iα
iα−1

x2

, (60)

which gives us the probability density

ρ = |ψ(x, t)|2 =

√√√√ 2α2

π(1 + α2)
e
− 2α2

1+α2 x2

. (61)
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This is a normalized Gaussian of width
√

1+α2

2α2 =
√

m2+(2h̄t)2

2m2 . Taking the
limit t → 0 we get back the initial wave-function as we should but for large
t we see that the width increases linearly with t so that the Gaussian wave-
packet is smoothly spreading with time in correspondence with our intuition
about this physical situation.

1.5 The path integral

The method we used to calculate the propagator in the free particle case was
to insert a complete set of momentum eigenstates to turn the Hamiltonian
operator into an ordinary function. However, this will work only for Hamil-
tonians depending on momenta only. For instance, if we try to use it in the
case of a Hamiltonian of the form Ĥ = p̂2

2m
+ V (x̂) we have

〈x|e−
i
h̄

tĤ |x′〉 =
∫
dp〈x|e−

i
h̄

tĤ |p〉〈p|x′〉, (62)

but now

〈x|e−
i
h̄

tĤ |p〉 6= e−
i
h̄

t( p2

2m
+V (x))〈x|p〉. (63)

I repeat: the left hand side and right hand side of the above equation are
not equal to each other. To see this explicitly, try to evaluate the first few
terms in a series expansion of the exponential on both sides (for the simple
Hamiltonian Ĥ = p̂2 + x̂2 for example). You will see that the problem is that
the p̂2 part of the Hamiltonian does not commute with the x̂2 part. You will
also see that the problem will appear at the quadratic (and higher) term in
the expansion.

We therefore have to find some different way to calculate the propagator
when the Hamiltonian is more complicated than the free particle. Instead,
let us try to compute it for an infinitesimal time step. As before, the general
case we can always get by putting together infinitely many infinitesimal steps.
In the infinitesimal case we have

〈x|e−
i
h̄

Ĥ∆t|x′〉 ≈ 〈x|
(
1− i

h̄
∆tĤ

)
|x′〉. (64)

Inserting a complete set of momentum eigenstates now is non problematic

K(x, t+ ∆t;x′, t) = (65)∫
d3p

(
〈x|p〉〈p|x′〉 − i

h̄
∆t〈x| p̂

2

2m
|p〉〈p|x′〉 − i

h̄
∆t〈x|V (x̂)|p〉〈p|x′〉

)
,

14



giving us the result

K(x, t+ ∆t;x′, t) = (66)∫
d3p

(
1− i

h̄
∆t

p2

2m
− i

h̄
∆tV (x)

)
〈x|p〉〈p|x′〉,

where now all the operators have been replaces by numbers. Notice that the
last term can be rewritten∫

d3p〈x|V (x̂)|p〉〈p|x′〉 =
∫
d3p〈x|p〉〈p|V (x̂)|x′〉, (67)

giving us the possibility to write

K(x, t+ ∆t;x′, t) = (68)∫
d3p

(
1− i

h̄
∆t

p2

2m
− i

h̄
∆tV (x)

)
〈x|p〉〈p|x′〉 =

∫
d3p

(
1− i

h̄
∆t

p2

2m
− i

h̄
∆tV (x′)

)
〈x|p〉〈p|x′〉 =

∫
d3p

(
1− i

h̄
∆t

p2

2m
− i

h̄
∆tV

(
x + x′

2

))
〈x|p〉〈p|x′〉. (69)

Again, to linear order in ∆t we can write this as

K(x, t+ ∆t;x′, t) =
∫
d3p e

− i
h̄
∆t

(
p2

2m
+V

(
x+x′

2

))
〈x|p〉〈p|x′〉 = (70)∫

d3p e−
i
h̄

H∆t〈x|p〉〈p|x′〉, (71)

where now H is a number and not an operator. Inserting the expression for
the wave functions we get

K(x, t+ ∆t;x′, t) =
∫ d3p

(2πh̄)3
e

i
h̄
∆t

(
p·(x−x′)

∆t
−H

)
. (72)

Now remember that x is the position at time t+∆t and that x′ is the position
at time t. This means that we can write

x− x′

∆t
≈ dx(t)

dt
, (73)
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giving us the expression for the infinitesimal propagator

K(x, t+ ∆t;x′, t) =
∫ d3p

(2πh̄)3
e

i
h̄
∆t(p·ẋ−H). (74)

Here we recognize the combination p · ẋ − H as being the Lagrangian of
classical mechanics (after performing a Legendre transform). In fact, we
can transform this into the usual Lagrangian (which does not depend on p
remember) by performing the p integration explicitly in the case where the

Hamiltonian is of the form H = p2

2m
+ V (x). Then we have

K(x, t+ ∆t;x′, t) = e−
i
h̄
∆tV

∫ d3p

(2πh̄)3
e

i
h̄
∆t

(
p·ẋ− p2

2m

)
=

e−
i
h̄
∆tV

∫ d3p

(2πh̄)3
e−

i
2h̄m

∆t(p2−2mp·ẋ). (75)

The integral is again Gaussian and can be performed with the tricks we have
developed earlier. Namely, we write

∫ d3p

(2πh̄)2
e−

i
2h̄m

∆t(p2−2mp·ẋ) =
∫ d3p

(2πh̄)2
e−

i
2h̄m

∆t[(p−mẋ)2−m2ẋ2], (76)

so that the integral (or integrals, there are three of them) can be performed
by redefining the integration variable p̃ = p−mẋ and using the usual formula
for the Gaussian integral (39). Doing this we finally get

K(x, t+ ∆t;x′, t) =
(

m

2πih̄∆t

) 3
2

e
i
h̄
∆t( 1

2
mẋ2−V ), (77)

and we see that indeed it is the classical Lagrangian that appears in the ex-
ponential. Therefore we have the extremely nice result that the infinitesimal
propagator can be written as

K(x, t+ ∆t;x′, t) =
(

m

2πih̄∆t

) 3
2

e
i
h̄
∆tL (78)

where we have introduced the classical Lagrangian L. Observing that for an
infinitesimal time interval ∆tL = S, the classical action evaluated for the
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straight line path between points x(t) and x(t+ ∆t)1.
Now let us try to evaluate the propagator for a finite time interval. In the

same way as before we divide the interval (say from ti to tf ) into infinitesimal
pieces and in each piece we can use the infinitesimal expression. To this end
define

∆t =
tf − ti
N

,

tk = ti + k∆t k ∈ [0 . . . N ], (79)

so that tN = tf and t0 = ti. By taking N large we can make the time intervals
as small as we like. Now let us compute the propagator by splitting it into
these intervals

K(xf , tf ;xi, ti) = 〈xf |Û(tf , ti)|xi〉 = (80)

lim
N→∞

〈xf |Û(tN , tN−1)× Û(tN−1, tN−2)× . . .× Û(t2, t1)× Û(t1, t0)|xi〉.

Between each of the Û operators we may insert 1̂ in the form of a complete
set of position eigenstates giving us the expression

K(xf , tf ;xi, ti) = lim
N→∞

∫
d3xN−1

∫
d3xN−2 . . .

∫
d3x2

∫
d3x1

〈xf |Û(tN , tN−1)|xN−1〉〈xN−1|Û(tN−1, tN−2)|xN−2〉 × . . .

. . .× 〈x2|Û(t2, t1)|x1〉〈x1|Û(t1, ti)|xi〉. (81)

But now each of the 〈xk+1|Û(tk+1, tk)|xk〉 is an infinitesimal propagator which
we just calculated. We know that it is simply given by the classical action
calculated along the straight line constant velocity path going from point xk

at time tk to the point xk+1 at time tk+1. Or in formulas we have

〈xk+1|Û(tk+1, tk)|xk〉 =
(

m

2πih̄∆t

) 3
2

e
i
h̄
∆tL(k+1,k). (82)

1Remember that the action is a functional which means it is a function of a function.
In other words, to compute S[x(t)], we need to specify the function x(t), that is we need
to specify how the particle moves from the point x(t1) to the point x(t2). What we just
showed is that we can write the infinitesimal propagator in terms of the path where the
particle moves from the initial point to the final point in a straight line with constant
speed.
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Inserting this in the formula for the full propagator we have

K(xf , tf ;xi, ti) = lim
N→∞

∫
d3xN−1

∫
d3xN−2 . . .

∫
d3x2

∫
d3x1(

m

2πih̄∆t

) 3N
2

e
i
h̄
∆tL(N,N−1) × . . .× e

i
h̄
∆tL(1,0). (83)

Since the L functions are just numbers and not operators we may just as well
write them all in the same exponential

K(xf , tf ;xi, ti) = lim
N→∞

∫
d3xN−1

∫
d3xN−2 . . .

∫
d3x2

∫
d3x1(

m

2πih̄∆t

) 3N
2

e
i
h̄
∆t(L(N,N−1)+L(N−1,N−2)+...+L(2,1)+L(1,0)). (84)

The expression in the exponential is nothing but the integral i
h̄

∫ tf
ti dtL(t)

along the piecewise linear path given in figure 3 Notice that the fact that we

Figure 3: The piecewise path

integrate over all possible intermediate positions (i.e. over all intermediate
xk) tells us that the propagator can essentially be calculated as the sum over

all possible paths of the factor e
i
h̄

S[path] where S[path] is the classical action
functional of the system. Sometimes this is written compactly as

K(xf , tf ;xi, ti) =
∫
Dxe

i
h̄

S[x], (85)

where the funny symbol Dx stands for summing over all paths (including all
the ugly factors which we have hidden).
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The path-integral formulation of Quantum Mechanics gives a very nice
interpretation of the theory and its classical limit. Namely, to calculate the
probability amplitude that something will happen in Quantum Mechanics we
have to include contribution from all possible ways it can happen, even over
the ways which are forbidden classically. For most of these paths the action
changes rapidly when we change the path a little bit. For instance, for a
particular generic path leading to the action S1 there is always a close lying
path having the action S1 + h̄π. When we add the contribution e

i
h̄

S of these
two paths we will get zero. However, there also exist special paths for which
the action does not change when we change the path a little bit. When we
sum over such paths they will add up instead of canceling out. These paths
are of course the paths which are solutions to the variational equation

δS

δx
= 0, (86)

i.e. the solutions to the classical equations of motion. So the classical limit
of Quantum mechanics is essentially the limit where we sum over only the
paths which are classically allowed.

1.6 The path integral evaluation of the harmonic os-
cillator

We will now illustrate the path integral method in an example. Namely,
we want to calculate the probability amplitude (propagator) that we find
the one dimensional harmonic oscillator at the point xf at time tf if we
at time ti have it localized at point xi. We will use the definition in the
form (83) so we first need to decompose the interval into N equal pieces.
Thus we have (xi(ti), ti) = (x0(t0), t0), . . . , (xN(tN), tN) = (xf (tf ), tf ) and
∆t = tN−t0

N
= tk+1 − tk. The definition now becomes

〈f|i〉 = lim
N→∞

(
m

2πih̄∆t

)N
2
∫
dxN−1e

im∆t
2h̄

(
(xN−xN−1)

∆t2
−ω2

(
xN +xN−1

2

)2
)

× . . .×
∫
dx1e

im∆t
2h̄

(
(x1−x0)

∆t2
−ω2(x1+x0

2 )
2
)
. (87)

Reshuffling the terms a bit and introducing the notation

A =
m∆t

2ih̄

(
1

∆t2
− ω2

4

)
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B =
m∆t

2ih̄

(
1

∆t2
+
ω2

4

)
, (88)

we may write the path integral as

〈f|i〉 = lim
N→∞

(
m

2πih̄∆t

)N
2
∫ N−1∏

k=1

dxke
−Ax2

N−Ax2
N−1+2BxNxN−1

× . . .× e−Ax2
1−Ax2

0+2Bx1x0 . (89)

This can be written even more compactly using matrix notation. We intro-
duce the N − 1 dimensional matrices

q =


x1
...

xN−1

 , q0 =



Bx0

0
...
0

BxN

 ,

M =


2A −B 0 0 · · ·
−B 2A −B 0 · · ·
0 −B 2A −B · · ·
...

...
...

...
. . .

 , (90)

we may write the path integral very compactly as

〈f|i〉 = lim
N→∞

(
m

2πih̄∆t

)N
2

e−A(x2
0+x2

N )
∫ N−1∏

k=1

dxke
−qT Mq+qT q0+qT

0 q. (91)

The expression in the exponent can be rewritten as

−qTMq + qT q0 + qT
0 q = −

(
qT − qT

0 M
−1
)
M
(
q −M−1q0

)
+ qT

0 M
−1q0, (92)

where we have used that M is nondegenerate and symmetric. We now use the
fact that we may shift each of the integration variables xk by an arbitrary
constant without producing a (nontrivial) Jacobian. Thus we collectively
define the new integration variables

y =


y1
...

yN−1

 = q −M−1q0, (93)
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which, when inserted in the path integral gives

〈f|i〉 = lim
N→∞

(
m

2πih̄∆t

)N
2

e−A(x2
0+x2

N )e+qT
0 M−1q0

∫ N−1∏
k=1

dyke
−yT My. (94)

Since M is a symmetric (N−1 by N−1) matrix, we know that there exists an
orthogonal matrix O with detO = 1 such that OTMO is a diagonal matrix
which we will call D. Thus, if we again change integration variables Oz = y
which produces a Jacobian detO = 1 we may write the path integral as

〈f|i〉 = lim
N→∞

(
m

2πih̄∆t

)N
2

e−A(x2
0+x2

N )e+qT
0 M−1q0

∫ N−1∏
k=1

dzke
−zT OT MOz. (95)

Since OTMO = D we have decoupled the N − 1 integrals into simple Gaus-
sians which we are able to perform. Thus we have

〈f|i〉 = lim
N→∞

(
m

2πih̄∆t

)N
2

e−A(x2
0+x2

N )e+qT
0 M−1q0

N−1∏
k=1

∫
dzke

−dkkz2
k =

lim
N→∞

(
m

2πih̄∆t

)N
2

e−A(x2
0+x2

N )e+qT
0 M−1q0

N−1∏
k=1

√
π

dkk

=

lim
N→∞

(
m

2πih̄∆t

)N
2

e−A(x2
0+x2

N )e+qT
0 M−1q0

√
πN−1

detD
=

lim
N→∞

(
m

2πih̄∆t

)N
2

e−A(x2
0+x2

N )e+qT
0 M−1q0

√
πN−1

detM
, (96)

where we in the last line have used that detD = detOTMO = detM . This
is quite a simple expression for the complicated path integral! It depends on
the determinant and the inverse of the matrix M . Fortunately, because of
the simple expression for q0 (90) we only need to know the matrix elements
(M−1)11 and (M−1)1 N−1 of the inverse.

We will calculate the determinant recursively. Let us call the determinant
of theN−1 timesN−1 dimensional matrixM (90) IN−1. Using the structure
of M we may derive a recursion relation for IN . Namely, we have that IN+2 =
2AIN+1 − B2IN with initial conditions I1 = 2A and I2 = 4A2 − B2. Such
a recursion relation can be conveniently solved by defining the generating
function

f(ξ) =
∞∑

n=0

In
ξn

n!
. (97)
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Multiplying the recursion relation by ξn

n!
and summing we get a differential

equation for f(ξ)

f ′′ − 2Af ′ + f = 0, (98)

with general solution

f(ξ) = c1e
ω+ξ + c2e

ω−ξ , ω± = A±
√
A2 −B2 (99)

Taylor expanding f(ξ) we can read off the individual IN . The initial condi-
tions give equations for c1 and c2

c1ω+ + c2ω− = 2A

c1ω
2
+ + c2ω

2
− = 4A2 −B2, (100)

which can be solved to find c1 = ω+

2
√

A2−B2 and c2 = − ω−
2
√

A2−B2 which then
gives us the general expression

IN =
1

2
√
A2 −B2

(
ωN+1

+ − ωN+1
−

)
. (101)

To find the elements of M−1 we use Cramer’s rule and the fact that we know
the determinant of M of various dimensions. Straightforwardly we have

(M−1)11 =
IN−2

IN−1

(102)

To calculate (M−1)1 N−1 is a bit more tricky. The minor one has to compute
is an upper triangular matrix with −B on the diagonal. Thus we have

(M−1)1 N−1 =
BN−2

IN−1

. (103)

Thus we have

〈f|i〉 = lim
N→∞

(
m

2πih̄∆t

)N
2

e−A(x2
0+x2

N )e
(x2

0+x2
N )

B2IN−2
IN−1

+2x0xN
BN−2

IN−1

√√√√πN−1

IN−1

. (104)

Now we have to take the N → ∞ limit in this expression. First let us have
a look at the determinant. From the explicit expressions for ω± (99) and the
constants A and B (88) we have

ω± =
m

2ih̄∆t

(
1± iω∆t

2

)2

. (105)
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Here the N dependence is hidden in ∆t = tN−t0
N

. Let us define T = tN − t0.
Then we can write

ωN
± =

(
m

2ih̄∆t

)N (
1± iωT

2N

)2N

=
(

m

2ih̄∆t

)N

e2N ln(1± iωT
2N ) ≈(

m

2ih̄∆t

)N

e2N(± iωT
2N

− 1
2(

iωT
2N )

2
) ≈

(
m

2ih̄∆t

)N

e±iωT

(
1 +

ω2T 2

4N
+O(

1

N2
)

)
,(106)

giving

IN−1 =
2ih̄

mω

(
m

2ih̄∆t

)N

sinωT

(
1 +

ω2T 2

4N
+O(

1

N2
)

)
(107)

A similar but slightly more involved calculation gives for

IN−2 =
2ih̄

mω

(
m

2ih̄∆t

)N−1 [
sinωT − ωT

N
cosωT +O(

1

N2
)
]
×

(1 +
ω2T 2

4N
+O(

1

N2
)). (108)

Similarly we have

BN =
(

m

2ih̄∆t

)N (
1 +O(

1

N2
)
)

(109)

This is all we need to compute the relevant expressions in (104). They are

B2IN−2

IN−1

− A =
(

m

2ih̄∆t

)(
1− ωT

N
cotωT

)
−
(

1− ω2T 2

4N2

)
=

−
(
ωm

2ih̄

)
cotωT +O(

1

N
), (110)

and

BN

IN−1

=
mω

2ih̄

1

sinωT
+O(

1

N
). (111)

In these expressions we may now take the limit N →∞ since all potentially
divergent terms have cancelled. Collecting all terms we have

〈f|i〉 = lim
N→∞

(
m

2πih̄∆t

)N
2

(
2πih̄∆t

m

)N
2
√

mω

2πih̄ sinωT

e−
mω
2ih̄ (cot ωT(x2

0+x2
N)− 2

sin ωT
x0xN+O( 1

N2 )). (112)
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We see that indeed all the dangerous N dependence cancel and we can safely
take the limit N → ∞ which has the effect that we drop all terms O( 1

N
).

The final result is then

〈xf |xi〉 =

√
mω

2πih̄ sinωT
e

imω
2h̄ (cot ωT(x2

i +x2
f)−

2
sin ωT

xixf) (113)

2 Angular momentum

We know from experience that there is no preferred place or direction in
the universe, that is, in more fancy language, that space is homogeneous
and isotropic. (Homogeneous means that space is invariant under trans-
lations and isotropic means that it is invariant under rotations). This, in
classical mechanics leads to the conservation of momentum and angular mo-
mentum respectively. This makes it important to study how physical objects
transform under translations and rotations. This is also true in quantum
mechanics. In this section we will study how physical systems behave under
rotations in quantum mechanics.

The effect of a rotation of the physical system in quantum mechanics is
of course represented by the action of an operator. Let us use the notation

R̂n (φ) , (114)

for the operator which performs a rotation by an angle φ around the unit
vector n.

One important property of the operator R̂ we get from the fact that we
cannot “lose” particles (or probability) when we do a rotation. This tells us
that the state we get as a result of a rotation has to have the same norm as
the initial state. In formulas we write

〈χ|χ〉 = 〈χ′|χ′〉 = 〈χ|R̂†R̂|χ〉, (115)

which implies that R̂†R̂ = 1̂ or that the operator R̂ is a unitary operator.
We can learn a lot from the fact that quantum mechanical rotations have

to fulfill the properties of classical rotations. In particular, we know that any
classical rotation can be built up from many infinitesimal rotations. That is,
instead of rotating the system the angle φ around the axis n we can rotate it
N times around the same axis, but each time only an angle φ

N
. Our experience
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from classical physics tells us the the result of these two operations has to be
the same. In quantum mechanics we write

R̂n (φ) =

[
R̂n

(
φ

N

)]N

. (116)

We also know that letting the angle with which we rotate become small, the
“change” of the system becomes smaller and smaller. In quantum mechanics
we could write this as

lim
φ→0

R̂ (φ) = 1̂, (117)

or, introducing an operator K̂(φ) with the property that limφ→0 K̂ (φ) = 0
we can for infinitesimal angles ε write

R̂(ε) = 1̂ + K̂ (ε) + . . . . (118)

Keeping the angle infinitesimal, and using (116) we can write

1̂ + K̂(2ε) = R̂(2ε) = R̂(ε)R̂(ε) =
(
1̂ + K̂(ε)

) (
1̂ + K̂(ε)

)
= 1̂ + 2K̂(ε) + . . .(119)

That is, K̂(2ε) = 2K̂(ε). This means that K̂ depends on ε linearly. Let us
therefore write

K̂(ε) = − i

h̄
εĴ . (120)

(The factor − i
h̄

is introduced for convenience). Now wemay also use that R̂
is unitary to write

1̂ = R̂†(ε)R̂(ε) =
(
1̂− i

h̄
εĴ
)† (

1̂− i

h̄
εĴ
)

=
(
1̂ +

i

h̄
εĴ†

)(
1̂− i

h̄
εĴ
)

1̂ +
i

h̄
ε(Ĵ† − Ĵ) +O(ε2), (121)

which leads us to deduce that Ĵ = Ĵ† or, that Ĵ is a hermitian operator. Ĵ
is called the generator of rotations2.

2Here one can notice the reason for the extra factor of i in the definition of Ĵ . Had it not
been there the operator Ĵ would have been antihermitian. Since we know that Hermitian
operators are nice (they have real eigenvalues for instance) this is why we choose to define
Ĵ as we did.
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Since an arbitrary rotation can be thought of as being composed of an
infinite number of infinitesimal rotations we can use the infinitesimal form
found above to give the general form of the rotation operator. That is, we
build up a rotation with angle φ as N rotations all with angle ∆φ = φ

N
. That

is

R̂(φ) = lim
N→∞

[
R̂

(
φ

N

)]N

= lim
N→∞

[
1− i

h̄

φ

N
Ĵ

]N

. (122)

Using a known formula for the exponential as ex = limN→∞
(
1 + x

N

)N
we

find

R̂(φ) = e−
i
h̄

Ĵφ, (123)

in agreement with what we said about the operator R̂ before.
It interesting to check that unitary operators can generally be written

in terms of hermitian operators in this very convenient way. Namely, if we
let Ĵ be an hermitian operator Ĵ† = Ĵ , the operator R̂ = e−iĴ is always

unitary since R̂† =
(
1− iĴ + (−iĴ)2

2!
+ . . .

)†
=
(
1 + iĴ† + (iĴ†)2

2!
+ . . .

)
= eiĴ

and e−iĴeiĴ = 1.
To summarize what we have found one can say that the operator of ro-

tations with angle φ around an axis n can be written as

R̂n(φ) = e−
i
h̄

φĴn , (124)

where Ĵn is a hermitian operator called the generator of rotations around
axis n. If physics is invariant under rotations around n it is represented by
a state |ψ〉 which has to be an eigenstate of the generator of rotations.

Another classical property of rotations is that they do not commute. That
is a rotation around the x-axis followed by a rotation around the y-axis is
not the same as a rotation around the y-axis followed by a rotation around
the x-axis. This is however true only in the non infinitesimal case. One can
for instance check that two (classical) rotations with angle ε around the x
and y axises commute when taking into account terms linear in epsilon only.
To see the non-commutativity one has to also keep terms quadratic in ε.
Mathematically we may write

Rx(ε)Ry(ε)−Ry(ε)Rx(ε) = Rz(ε
2)− 1 +O(ε3). (125)

26



Let us check how this goes in the quantum mechanical case. Writing the
rotation operators in terms of generators we have on the left hand side

R̂xR̂y − R̂yR̂x =
(
1− i

h̄
Ĵxε−

1

2h̄2 Ĵ
2
xε

2
)(

1− i

h̄
Ĵyε−

1

2h̄2 Ĵ
2
y ε

2
)
−(

1− i

h̄
Ĵyε−

1

2h̄2 Ĵ
2
y ε

2
)(

1− i

h̄
Ĵxε−

1

2h̄2 Ĵ
2
xε

2
)

+O(ε3) =

− ε
2

h̄2

[
Ĵx, Ĵy

]
+O(ε3). (126)

This should be compared to the right hand side which becomes

R̂z

(
ε2
)
− 1 = − i

h̄
Ĵzε

2. (127)

Thus we see that for rotations in quantum mechanics to have the properties
of classical rotations, we need to require

[
Ĵx, Ĵy

]
=
h̄2

ε2

(
i

h̄
Ĵzε

2
)

= ih̄Ĵz. (128)

Since the axis around which we performed the rotation is really arbitrary
in this example, we can immediately generalize this to the commutation
relations [

Ĵi, Ĵk

]
= ih̄εiklĴl, (129)

where we have introduced the notation Ĵ1 = Ĵx, Ĵ2 = Ĵy, Ĵ3 = Ĵz and the
totally antisymmetric tensor εikl.

2.1 An example

As an illustration of the use of rotations in quantum mechanics consider
the following situation. The “elementary” particle Λ0 (with spin 1

2
) decays

into a π− meson (with spin 0) and a proton p+ (with spin 1
2
). Assume that

the initial Λ0 particle is in a state where the spin is pointing upwards along
the z-axis and let us call this state |+〉 (as opposed to the state with spin
projection down which we will call |−〉). Our task is to calculate the angular
distribution of the final p+ (because of momentum conservation the p+ and
the π− always go out back to back so we do not need to worry about the
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π− in what follows). What “angular distribution” means is that we want
to calculate the probability that the proton p+ comes out at an angle θ
with the z-axis. This seems almost impossible since it seems that we do
not have enough information to calculate this but the answer is essentially
given by rotation invariance. Calculate as follows: assume that we know the
probability for the proton to go out along the z-axis. To be concrete, let
us say that the probability amplitude is a if the initial Λ0 has spin up |+〉
and b if the initial Λ0 has spin down |−〉. Because of angular momentum
conservation the proton comes out with spin up in the first case and with
spin down in the second case. To calculate the probability amplitude for
the proton to go out at an angle θ we take the original Λ0 and rotate it. In
the rotated system we want to calculate the probability for the proton to go
straight up (since this is at an angle θ with the original Λ0). To find out the
effect of a rotation on Λ0 we need to know how the rotation operator acts on
spin 1

2
states. This will be shown later in great detail so let me just quote

the result for a rotation around the y-axis

R̂y (θ) |+〉 = cos

(
θ

2

)
|+〉+ sin

(
θ

2

)
|−〉, (130)

so in the rotated system the probability amplitude that the proton goes
straight up with spin up is

a cos

(
θ

2

)
, (131)

and the probability amplitude that the proton goes straight up with spin
down is

b sin

(
θ

2

)
. (132)

The probability that the proton comes out with spin up is

|a|2 cos2

(
θ

2

)
, (133)

and with spin down it is given by

|b|2 sin2

(
θ

2

)
. (134)
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The total probability that the proton comes out at an angle θ (if we do not
observe the spin) is given by the sum of these two probabilities

|a|2 + |b|2

2

(
1 +

|a|2 − |b|2

|a|2 + |b|2
cos (θ)

)
. (135)

So we see that from just rotation invariance we have been able to say that
the probability that the proton goes out at an angle θ is given by a formula
of the type

α (1 + β cos (θ)) , (136)

for some constants α and β.

2.2 The angular momentum algebra

The angular momentum algebra can abstractly be written as[
Ĵi, Ĵk

]
= ih̄εikl Ĵl, (137)

where εijk is the completely antisymmetric symbol and repeated indices are
summed over. This is a compact form of writing the following three commu-
tation relations [

Ĵ1, Ĵ2

]
= ih̄Ĵ3,[

Ĵ2, Ĵ3

]
= ih̄Ĵ1, (138)[

Ĵ3, Ĵ1

]
= ih̄Ĵ2,

(139)

where we can interpret Ĵ1 = Ĵx, Ĵ2 = Ĵy and Ĵ3 = Ĵz. It is possible to form

an operator which commutes with all Ĵi. Namely, define Ĵ2 = Ĵ2
1 + Ĵ2

2 + Ĵ2
3 .

Then it is easy to check that
[
Ĵi, Ĵ

2
]

= 0 for all i. This means that we can

always choose states to be simultaneous eigenstates of Ĵ2 and Ĵi for one fixed
i. Let us choose Ĵ3 = Ĵz to be concrete. Then we can choose states |a, b〉
such that

Ĵ3|a, b〉 = a|a, b〉,
Ĵ2|a, b〉 = b|a, b〉. (140)
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To find out what Ĵ1 and Ĵ2 do with this state we define the operators Ĵ± =
Ĵ1 ± iĴ2. Since the operators Ĵ± are just linear combinations of Ĵ1,2 we
may equivalently work with them or, in other words, the algebra in terms
of Ĵ+, Ĵ−, J3 contains the same information (is equivalent to) the algebra in
terms of Ĵ1, Ĵ2, Ĵ3. In terms of these new operators the algebra looks like[

Ĵ3, Ĵ±
]

= ±h̄Ĵ±,[
Ĵ+, Ĵ−

]
= 2h̄Ĵ3. (141)

We may also rewrite Ĵ2 in terms of the new operators. By inserting their
definitions it is straightforward to confirm that Ĵ2 = 1

2

{
Ĵ+, Ĵ−

}
+ Ĵ2

3 where

we have introduced the anti-commutator
{
Â, B̂

}
= ÂB̂ + B̂Â.

We will now try to find out what the operators Ĵ± does to the states
|a, b〉. In fact, running ahead a bit, we will see that they map these states
into each other, that is acting with Ĵ± on an eigenstate of Ĵ3, Ĵ

2 gives us
back a (generally different) eigenstate of Ĵ3, Ĵ

2. In formulas we have

Ĵ3Ĵ±|a, b〉 =
([
Ĵ3, Ĵ±

]
+ Ĵ±Ĵ3

)
|a, b〉

=
(
±h̄Ĵ± + Ĵ±a

)
|a, b〉 (142)

= (a± h̄) Ĵ±|a, b〉,

which tells us that Ĵ±|a, b〉 is an eigenstate of Ĵ3 with eigenvalue (a± h̄). Let
us check that Ĵ±|a, b〉 is an eigenstate of also Ĵ2. This is even easier; since
Ĵ2 commutes with all Ĵi it also commutes with Ĵ± which are just linear com-
binations of the Ĵi operators. Thus we have that Ĵ2Ĵ±|a, b〉 = Ĵ±Ĵ2|a, b〉 =
bĴ±|a, b〉 showing that Ĵ±|a, b〉 is an eigenstate of both Ĵ3 and Ĵ2 with eigen-
values a± h̄ and b. That is, that Ĵ±|a, b〉 ∝ |a± h̄, b〉. Notice that the action
of Ĵ1 or Ĵ2 does not give back states of the type |a, b〉. This is the explanation
why we choose to work with Ĵ±.

Acting more times with Ĵ± and using the argument repeatedly we have

that
(
Ĵ±
)n
|a, b〉 ∝ |a± nh̄, b〉 and it looks like we can go on forever like this.

However, this cannot be true which we can see by studying the operator
Ĵ2 − Ĵ2

3 . According to a previous formula, this can be written as

Ĵ2 − Ĵ2
3 =

1

2

{
Ĵ+, Ĵ−

}
=

1

2

(
Ĵ−Ĵ+ + Ĵ+Ĵ−

)
, (143)
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and using that Ĵ± =
(
Ĵ∓
)†

we can write this as

Ĵ2 − Ĵ2
3 =

1

2

(
Ĵ†+Ĵ+ + Ĵ†−Ĵ−

)
. (144)

Taking the expectation value of this relation in a |a, b〉 state we have on the
left hand side

〈a, b|
(
Ĵ2 − Ĵ2

3

)
|a, b〉 = b− a2, (145)

and on the right hand side we get

1

2
〈a, b|

(
Ĵ†+Ĵ+ + Ĵ†−Ĵ−

)
|a, b〉 =

1

2

(∣∣∣Ĵ+|a, b〉
∣∣∣2 +

∣∣∣Ĵ−|a, b〉∣∣∣2) ≥ 0, (146)

which leads to the inequality

b− a2 ≥ 0. (147)

Here is a lot of information hidden. First of all, b has to be positive. Second
of all, a cannot be arbitrary large but there exists a maximal a = amax such
that

b ≥ a2
max,

b < (amax + h̄)2 , (148)

and equivalently a minimal a = amin such that

−b ≤ a2
min,

−b > (amin − h̄)2 . (149)

In order for the
(
Ĵ±
)n
|a, b〉 ∝ |a±mh̄, b〉 iteration to stop at amax (resp.

amin), we need

Ĵ+|amax, b〉 = 0,

Ĵ−|amin, b〉 = 0. (150)

This we may now use in the following way

0 = Ĵ−Ĵ+|amax, b〉 =
(
Ĵ1 − iĴ2

) (
Ĵ1 + iĴ2

)
|amax, b〉 =(

Ĵ2
1 + Ĵ2

2 + i
[
Ĵ1, Ĵ2

])
|amax, b〉 =

(
Ĵ2

1 + Ĵ2
2 − h̄Ĵ3

)
|amax, b〉 = (151)(

Ĵ2 − Ĵ2
3 − h̄Ĵ3

)
|amax, b〉 =

(
b− a2

max − h̄amax

)
|amax, b〉,
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which tells us that b = amax (amax + h̄). The same calculation starting with
0 = Ĵ+Ĵ−|amin, b〉 gives b = amin (amin − h̄) which tells us that amin = −amax.

Starting from |amin, b〉 = |−amax, b〉 and acting with Ĵ+ we should reach
|amax, b〉 after a finite number of steps, let us say n (where n of course is
an integer). Thus we have −amax + nh̄ = amax, or amax = n

2
h̄. Thus, the

representation is characterized by the half-integer n
2
. Let us call it j for

simplicity (and we have to remember that j can be both integer and half-
integer). Then we have

b = h̄2j (j + 1) ,

a ∈ h̄ [−j,−j + 1, . . . , j − 1, j] . (152)

In the following we will forget about the h̄ factors in the way we denote the
states |a, b〉 and denote them just by the half-integer j and by m = a

h̄
so that

an arbitrary state will look like |j,m〉 where m ∈ [−j, . . . , j]. The action by
the operators on these states are

Ĵ2|j,m〉 = h̄2j (j + 1) |j,m〉,
Ĵ3|j,m〉 = h̄m|j,m〉, (153)

Ĵ±|j,m〉 ∝ |j,m± 1〉.

In the last relation, we can even compute the coefficient of proportionality.
Namely, if we have Ĵ+|j,m〉 = Cj,m|j,m + 1〉 we can compute the absolute
value of Cj,m since we know that the |j,m〉 states are normalized. Thus

|Cj,m| =
∣∣∣Ĵ+|j,m〉

∣∣∣2 = 〈j,m|Ĵ†+Ĵ+|j,m〉 = 〈j,m|Ĵ−Ĵ+|j,m〉 =

〈j,m|
(
Ĵ2

1 + Ĵ2
2 + i

[
Ĵ1, Ĵ2

])
|j,m〉 =

〈j,m|
(
Ĵ2 − Ĵ2

3 − h̄Ĵ3

)
|j,m〉 = (154)

h̄2 (j (j + 1)−m (m+ 1)) ,

so if we choose Cj,m to be real and positive by convention we have

Ĵ+|j,m〉 = h̄
√
j (j + 1)−m (m+ 1)|j,m + 1〉. (155)

A similar calculation for Ĵ− gives

Ĵ−|j,m〉 = h̄
√
j (j + 1)−m (m− 1)|j,m− 1〉. (156)

Notice that the proportionality factor indeed vanishes for the case Ĵ+|j, j〉 or
Ĵ−|j,−j〉 so that the iteration indeed stops as we claimed before.

32



2.3 The rotation operator in general

We are now equipped to study the rotation operator in general. From the
previous section we know that any action of the Ĵ operators on a state with
fixed quantum number j gives back states with the same quantum number
j (but in general with different values of the quantum number m). In more
physical language this corresponds to the fact that if we take a spin j particle
and rotates it, it stays a spin j particle. In mathematical language we say that
the states with spin j constitutes a irreducible representation of the rotation
group3. In other words, the rotation operator acts in a block diagonal way on
the different irreducible representations. This means that we can study how
the rotation operator looks like for the different representations (or spins if
you like) separately. For instance, for the spin 0 representation the rotation
operator acts trivially (since there is only one state there is not much that
can happen) so the first non-trivial example is for the spin half (j = 1

2
)

representation. From the previous section we know that there are two states
in this representation

|1
2
,
1

2
〉 ≡ |+〉,

|1
2
,−1

2
〉 ≡ |−〉. (157)

The action of the generators on these states is given by

Ĵz|±〉 = ± h̄
2
|±〉,

Ĵ+|+〉 = 0,

Ĵ−|+〉 = h̄

√
3

4
+

1

4
|−〉 = h̄|−〉, (158)

Ĵ+|−〉 = h̄

√
3

4
+

1

4
|+〉 = h̄|+〉,

Ĵ−|−〉 = 0.

From the action of the Ĵ± operators we find the action of the Ĵx and Ĵy

operators as

Ĵx|+〉 =
h̄

2
|−〉,

3An irreducible representation is the minimal set of states that transform into each
other under an arbitrary operation of the group
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Ĵx|−〉 =
h̄

2
|+〉, (159)

Ĵy|+〉 = − h̄

2i
|−〉,

Ĵy|−〉 =
h̄

2i
|+〉.

Equivalently, we can give the matrix elements of the operators as(
〈+|Ĵ |+〉 〈+|Ĵ |−〉
〈−|Ĵ |+〉 〈−|Ĵ |−〉

)
. (160)

Doing this we have

Jx =
h̄

2

(
0 1
1 0

)
,

Jy =
h̄

2

(
0 −i
i 0

)
, (161)

Jz =
h̄

2

(
1 0
0 −1

)
.

(Here you might recognize the Pauli matrices!) This matrix notation is very
efficient if we want to find matrix elements of powers of operators. For
instance, finding the matrix elements of the operator ÔK̂ one proceeds as
follows. An arbitrary matrix element is

〈i|ÔK̂|k〉 =
∑
n

〈i|Ô|n〉〈n|K̂|k〉, (162)

where we have inserted 1̂ in terms of a complete set of states between the
operators. We see that the matrix elements of the product operator is given
by the product of the matrices 〈i|Ô|n〉 and 〈n|K̂|k〉. Thus we can evaluate any
power of the operators Ĵi by taking the power of their matrix representatives.
To be concrete, let us take Ĵy as an example. We now compute

J2
y =

(
h̄

2

)2 (
0 −i
i 0

)(
0 −i
i 0

)
=

(
h̄

2

)2 (
1 0
0 1

)
. (163)

Now it is easy to generalize to arbitrary power, we get

J2n
y =

(
h̄

2

)2n (
1 0
0 1

)
,

J2n+1
y =

(
h̄

2

)2n+1 (
0 −i
i 0

)
. (164)
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This we can use to compute the matrix representative of the rotation operator
R̂y since

Ry(θ) = e−
i
h̄

Jyθ =
∞∑

n=0

1

n!

(
− i

h̄
Jyθ

)n

=

1− iθ

2

(
0 −i
i 0

)
+

1

2!

(
−iθ

2

)2 (
1 0
0 1

)
+ . . . . (165)

We see that the odd and even dimensional powers decouple when we add up
the matrices. The sum is

Ry(θ) =

(
1 0
0 1

) ∞∑
n=0

1

(2n)!

(
−iθ

2

)2n

+

(
0 −i
i 0

) ∞∑
n=0

1

(2n+ 1)!

(
−iθ

2

)2n+1

,(166)

and using that

∞∑
n=0

1

(2n)!

(
−iθ

2

)2n

= cos
θ

2
,

∞∑
n=0

1

(2n+ 1)!

(
−iθ

2

)2n+1

= −i sin θ
2
, (167)

we get

Ry(θ) =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
, (168)

which we interpret to mean in the operator language that

R̂y (θ) |+〉 = cos
θ

2
|+〉+ sin

θ

2
|−〉,

R̂y (θ) |−〉 = − sin
θ

2
|+〉+ cos

θ

2
|−〉 (169)

Needless to say, this method to compute the action of an arbitrary ro-
tation becomes very cumbersome when the representations (or the spins if
you prefer) become large since the matrices then become very big. There is
another nice way to compute the action of a rotation for arbitrary spin. We
start by observing that any state state with fixed spin j and maximal spin
projection m = j can be constructed by putting 2j spin 1

2
states, all with
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spin up, next to each other. Another way of saying it is that if we have 2j
spin 1

2
particles, all with spin up, the system as a whole is in the state |j, j〉4.

Mathematically we would write

|+〉 ⊗ |+〉 ⊗ . . .⊗ |+〉 = |j, j〉. (170)

The action of the rotation operator on |j, j〉 is now given by the fact that we
know how a rotation acts on each of the |+〉 states. (We just computed the
R̂y action, remember). Since we know that the rotation operator does not
give us states with different spin, we can classify what we get by computing
m. This method can be used to compute the rotation operator for arbitrary
spin but let us illustrate the method by using it to compute R̂y in the spin 1
representation. In that case we have

|1, 1〉 = |+〉 ⊗ |+〉, (171)

which, when we act on it with the rotation operator becomes

R̂y(θ)|1, 1〉 =

(
cos

θ

2
|+〉+ sin

θ

2
|−〉

)
⊗
(

cos
θ

2
|+〉+ sin

θ

2
|−〉

)
. (172)

We know that the result of a rotation has to be a linear combination of states
with the same j but different m so we can write for some constants a, b and
c

R̂y(θ)|1, 1〉 = a|1, 1〉+ b|1, 0〉+ c|1,−1〉. (173)

Comparing both equations we see that

|1, 1〉 = |+〉 ⊗ |+〉,

|1, 0〉 =
1√
2

(|+〉 ⊗ |−〉+ |−〉 ⊗ |+〉) , (174)

|1,−1〉 = |−〉 ⊗ |−〉, (175)

and, consequently that

a = cos2 θ

2
,

b =
√

2 sin
θ

2
cos

θ

2
, (176)

c = sin2 θ

2
. (177)

4This will be discussed in great detail in the subsection about addition of angular
momenta
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Since we now know how the |1, 0〉 state looks like, we can find out how a
rotation acts on that state

R̂y|1, 0〉 =
1√
2

((
cos

θ

2
|+〉+ sin

θ

2
|−〉

)
⊗
(
− sin

θ

2
|+〉+ cos

θ

2
|−〉

)
+(

− sin
θ

2
|+〉+ cos

θ

2
|−〉

)
⊗
(

cos
θ

2
|+〉+ sin

θ

2
|−〉

))
,(178)

leading to

R̂y|1, 0〉 = −
√

2 sin
θ

2
cos

θ

2
|1, 1〉+

(
cos2 θ

2
− sin2 θ

2

)
|1, 0〉+

√
2 sin

θ

2
cos

θ

2
|1,−1〉, (179)

and on the |1,−1〉 we similarly find

R̂y|1,−1〉 = sin2 θ

2
|1, 1〉 −

√
2 sin

θ

2
cos

θ

2
|1, 0〉+ cos2 θ

2
|1,−1〉, (180)

leading to the matrix representation of the spin 1 rotation operator

〈1,m′|R̂y|1,m〉 =

 cos2 θ
2

−
√

2 sin θ
2
cos θ

2
sin2 θ

2√
2 sin θ

2
cos θ

2
cos2 θ

2
− sin2 θ

2
−
√

2 sin θ
2
cos θ

2

sin2 θ
2

√
2 sin θ

2
cos θ

2
cos2 θ

2

 .(181)

One can check that this matrix is unitary as it should be.

2.4 The rotation operator in coordinate representation
and spherical harmonics

We can now ask what is the coordinate representation of the generators of
the rotation operator. We do this in the same way as one can do to find
the coordinate representation of the momentum operator. Namely, let us
consider the (infinitesimal) action of (say) R̂z on an arbitrary state

R̂z(∆φ)|ψ〉. (182)

The coordinate representation of this is of course

〈x|R̂z(∆φ)|ψ〉 =
(
〈ψ|R̂†

z(∆φ)|x〉
)∗

= (〈ψ||x + ∆φy, y −∆φx, z〉)∗ =

〈x + ∆φy, y −∆φx, z||ψ〉 = 〈x|ψ〉+ ∆φ

(
y
∂

∂x
− x

∂

∂y

)
〈x|ψ〉, (183)
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where we have used that R̂ is unitary so that R̂†(θ) = R̂(−θ). Since ∆φ is
infinitesimal we can expand R̂z(∆φ) = 1− i∆φ

h̄
Ĵz + . . .. Reading off terms up

to first order we get that

Ĵz = −ih̄
(
x
∂

∂y
− y

∂

∂x

)
. (184)

This is the coordinate representation of the generator Ĵz. In an exactly
analogous fashion we can compute the general formula

Ĵi = −ih̄εijkxj
∂

∂xk

. (185)

In spherical coordinates we can write the action of the (infinitesimal)
rotation operator as

R̂x(ε)|θ, φ〉 = |θ − ε sinφ, φ− ε cot θ cosφ〉,
R̂y(ε)|θ, φ〉 = |θ + ε cosφ, φ− ε cot θ sinφ〉, (186)

R̂z(ε)|θ, φ〉 = |θ, φ+ ε〉.

So in that case the coordinate representation becomes

〈x|R̂x(ε)|ψ〉 = 〈θ + ε sinφ, φ+ ε cot θ cosφ|ψ〉,
〈x|R̂y(ε)|ψ〉 = 〈θ − ε cosφ, φ+ ε cot θ sinφ|ψ〉, (187)

〈x|R̂z(ε)|ψ〉 = 〈θ, φ− ε|ψ〉,

and Taylor expanding in ε we get the coordinate representation of the gen-
erators

− i

h̄
〈x|Ĵx|ψ〉 =

(
sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

)
〈x|ψ〉,

− i

h̄
〈x|Ĵy|ψ〉 =

(
− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

)
〈x|ψ〉, (188)

− i

h̄
〈x|Ĵz|ψ〉 = − ∂

∂φ
〈x|ψ〉,

or, in other words

Jx = −ih̄
(
− sinφ

∂

∂θ
− cot θ cosφ

∂

∂φ

)
,
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Jy = −ih̄
(

cosφ
∂

∂θ
− cot θ sinφ

∂

∂φ

)
, (189)

Jz = −ih̄ ∂
∂φ
.

From these expressions we may also find the coordinate representations of
the ladder operators

J± = −ih̄e±iφ

(
±i ∂
∂θ
− cot θ

∂

∂φ

)
. (190)

Having the coordinate representation of the operators we may now pro-
ceed to find the coordinate representation of the states. In other words, we
want to find the wave functions 〈θ, φ|l,m〉. Let us first assume that l is an
integer (the half integer case we will be commented on in the end). First we
notice that the equation

mh̄〈θ, φ|l,m〉 = 〈θ, φ|Ĵz|l,m〉 = −ih̄ ∂
∂φ
〈θ, φ|l.m〉, (191)

can be immediately solved to tell us that the wave function can be written
as

〈θ, φ|l,m〉 = eimφfl(θ), (192)

for some function fl(θ). Now we know that for m = l we have

0 = 〈θ, φ|Ĵ+|l, l〉 = −ih̄ei(l+1)φ

(
i
∂fl

∂θ
− il cot θfl

)
, (193)

or, that

∂fl

∂θ
= l cot θfl. (194)

This is a first order differential equation which is easy to solve. The result is

fl = cl sin
l θ, (195)

for some normalization constant cl. To determine it we have to do the integral

1 = |cl|2
∫

sin θdθdφ |fl|2 = 2π |cl|2
∫ 1

−1
d(cos θ)

(
1− cos2 θ

)l
=

2π |cl|2
Γ(l + 1)Γ(1

2
)

Γ(l + 3
2
)

= |cl|2 4π
22ll!2

(2l + 1)!
, (196)
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leading to

cl =
(−1)l

2ll!

√
(2l + 1)!

4π
. (197)

Here the choice of the phase factor (−1)l is purely conventional.
Having the coordinate representation of the highest weight states it is an

easy task to find all states. We just proceed as we did before by acting with
Ĵ− to take us from one state to the other. To be explicit we have

h̄
√
l(l + 1)−m(m− 1)〈θ, φ|l,m− 1〉 = 〈θ, φ|Ĵ−|l,m〉 =

−ih̄e−iφ

(
−i ∂
∂θ
− im cot θ

)
〈θ, φ|l,m〉. (198)

The states come out automatically normalized and orthogonal to each other.
These wave functions are conventionally denoted Y m

l (θ, φ) = 〈θ, φ|l,m〉 and
are called Spherical harmonics. They form a complete basis of functions in
the angular variables θ and φ so that in problems with spherical symmetry
they are often used to Fourier expand the functions.

Let us try the method out for l = 1. In this case we know that

Y 1
1 = −

√
3

8π
sin θeiφ. (199)

To find Y 0
1 we act with Ĵ− to get

h̄
√

2Y 0
1 = −ih̄e−iφ

(
−i ∂
∂θ
− i cot θ

)
(−1)

√
3

8π
sin θeiφ, (200)

giving us

Y 0
1 =

√
3

16π
(cos θ + cos θ) =

√
3

4π
cos θ. (201)

Acting once more we have

h̄
√

2Y −1
1 = −ih̄e−iφ

(
−i ∂
∂θ

)√
3

4π
cos θ, (202)

40



which gives us

Y −1
1 =

√
3

8π
sin θe−iφ. (203)

One can try what happens if one assumes that l is half integer. For
simplicity let us assume l = 1

2
. Then the above program leads us to the wave

function

Y
1/2
1/2 = c 1

2

√
sin θe

i
2
φ. (204)

Acting on this with the Ĵ− operator we get

Y
−1/2
1/2 = −c 1

2
cot θ

√
sin θe−

i
2
φ. (205)

There are (at least) two problems with this (tentative) expression for the
half integer wave functions. Firstly it is singular at θ = 0, π. Secondly, if
we act with Ĵ− again we do not get zero as we should!! This leads us to the
conclusion that only the integer value angular momentum wave functions
have a coordinate representation. The half integer wave functions should be
understood as an internal property of the system and can not be understood
as “something rotating around something else” in normal space.

Finally, let us return to the rotation matrix now that we have found
the coordinate representation of the generators. Let us consider a rotation
matrix that takes a vector pointing in the z direction and rotates it to a
vector that point in the θ, φ direction. This can be done by first making a
rotation around y with angle θ and then a rotation around z with angle φ.
In other words, let us look at the operator

R̂(θ, φ) = R̂z(φ)R̂y(θ). (206)

This operator takes a state |ẑ〉 ≡ |θ = 0, φ〉 and rotates it to the state |n̂〉 ≡
|θ, φ〉. (Here n̂ is a unit vector in the φ, θ direction). In formulas we have

R̂|ẑ〉 = |n̂〉. (207)

In this relation we insert a 1̂ as follows

|n̂〉 =
∑
l′,m′

R̂|l′,m′〉〈l′,m′|ẑ〉. (208)
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Hitting everything from the left with a 〈l,m| gives

〈l,m|n̂〉 =
∑
l′,m′

〈l,m|R̂|l′,m′〉〈l′,m′|ẑ〉. (209)

Since we know that a rotation just mixes the m quantum numbers but not
the l quantum numbers, the sum over l′ is trivial, and we get

〈l,m|n̂〉 =
∑
m′
〈l,m|R̂|l,m′〉〈l,m′|ẑ〉. (210)

Now we can use that we know the coordinate representation of the |l,m〉
states. Namely, we know that

〈n̂|l,m〉 = Y m
l (θ, φ), (211)

which in particular means that

〈ẑ|l,m〉 = Y m
l (θ = 0, φ) =

√
2l + 1

4π
δm,0. (212)

Here we have used that we know that Y m
l (θ = 0, φ) vanishes for m 6= 05 and

the explicit form of Y 0
l . This implies that

(Y m
l (θ, φ))∗ =

∑
m′
〈l,m|R̂|l,m′〉

√2l + 1

4π
δm′,0

∗ = 〈l,m|R̂|l, 0〉
√

2l + 1

4π
,(213)

or

〈l,m|R̂|l, 0〉 =

√
4π

2l + 1
(Y m

l (θ, φ))∗ , (214)

so the matrix elements in the coordinate representation of the rotation matrix
are essentially given by the spherical harmonics!

2.5 Addition of angular momentum

We now turn to the problem of how systems of many spins (or angular
momenta) behave under rotations. Technically what happens is that a system
of many spins does not transform irreducibly under rotations and one has to

5This can be seen from the fact that Ĵz|ẑ〉 = 0 since then 0 = 〈ẑ|Ĵz|l,m〉 = h̄m〈ẑ|l,m〉
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decompose it into pieces that do transform irreducibly. In more physical
words, under a rotation the states of the system get mixed up. However,
since the representation is reducible all states do not transform into all other
states. It is possible to find subsets of states which transform into each other
and only into each other. One reason why this is important is that these
subgroups of states have similar physical properties. For instance, if our
physics is rotationally invariant we must have that

R̂Û |ψ〉 = ÛR̂|ψ〉, (215)

or, in words that we get the same thing if we first rotate the system and
then wait a little time or if we first wait and then rotate. this means that
R̂†ÛR̂ = Û or, infinitesimally, that

[
Ĵ, H

]
= 0. This means that we can

find a set of mutually commuting operators Ĵz, Ĵ
2, H whose eigenvalues we

can use to label the states |n, j,m〉. Also, since any rotation on the states
|n, j,m〉 just mixes the m quantum numbers (this is of course because any Ĵi

commutes with both Ĵ2 and Ĥ), the j and the n quantum number stay the
same, that is all states in a given angular momentum representation must
have the same energy! This is in general true for the spectrum of any operator
that commutes with rotations and since rotations and rotational symmetry
is such a common phenomenon in physics, it is very important to investigate
how these composite states decompose into states that transform irreducibly.

For instance, let us say that we have a system of two independent spin 1
2

spins. The Hilbert space of states are given by tensor products of states of
the single spins

|+〉 ⊗ |+〉, |+〉 ⊗ |−〉, |−〉 ⊗ |+〉, |−〉 ⊗ |−〉. (216)

We may define operators that act on the whole space as follows

Ŝ = Ŝ1 ⊗ 1̂ + 1̂⊗ Ŝ2. (217)

Here Ô⊗P̂ means an operator which acts on the state |a〉⊗|b〉 as Ô|a〉⊗P̂ |b〉.
With some abuse of notation, we often write Ŝ1 ≡ Ŝ1 ⊗ 1̂ and Ŝ2 ≡ 1̂⊗ Ŝ2.
Let us assume that the (rotationally invariant) Hamiltonian of the system is
given by

Ĥ = αŜ1 · Ŝ2 = α
(
Ŝ1x ⊗ Ŝ2x + Ŝ1y ⊗ Ŝ2y + Ŝ1z ⊗ Ŝ2z

)
. (218)
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We can straightforwardly compute the matrix elements of the Hamiltonian
as

〈±,±|Ĥ|±,±〉 =
αh̄2

4


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

 . (219)

We see that the Hamilton is not diagonal and hence the |±,±〉 states are
not the “correct” states to use. We can diagonalize the Hamiltonian with
the result that it has one eigenstate 1√

2
(|+〉 ⊗ |−〉 − |−〉 ⊗ |+〉) with eigen-

value −3αh̄2

4
and three eigenstates |+〉⊗ |+〉, 1√

2
(|+〉 ⊗ |−〉+ |−〉 ⊗ |+〉) and

|−〉⊗ |−〉 which each have eigenvalue αh̄2

4
. The single eigenstate corresponds

to a one-dimensional representation of the rotation group (a spin 0 represen-
tation) and the group of three eigenstates correspond to a three dimensional
representation (a spin 1 rep.). The states in each representations transform
into each other under rotations but they do not mix.

Let us now investigate how this work in general. Assume that we have
two independent arbitrary spins j1 and j2. Again we define the states of the
system with the help of the tensor product as |j1,m1〉 ⊗ |j2,m2〉. We also
define the operators

Ĵ = Ĵ1 ⊗ 1̂ + 1̂⊗ Ĵ2 ≡ Ĵ1 + Ĵ2. (220)

One can check that the operator thus defined also satisfies the angular mo-
mentum algebra [

Ĵi, Ĵk

]
= ih̄εiklĴl. (221)

Since we have two spins, the states of the system are completely given by
four quantum number. For instance the eigenvalues of J1z, Ĵ

2
1, J2z, Ĵ

2
2 (which

leads to the tensor product states |j1,m1〉⊗ |j2,m2〉). However, if one instead
takes the four operators Ĵ2

1, Ĵ
2
2, Ĵ

2, Ĵz one can show that they also mutually
commute. For instance, that Ĵ2 and Ĵz commutes follows from the fact that
they satisfy the usual angular momentum commutation relations. That Ĵ2

1

and Ĵ2
2 commutes follows from the fact that they act on independent spaces.

In formulas we would write

Ĵ2
1Ĵ

2
2 ≡

(
Ĵ2

1 ⊗ 1̂
) (

1̂⊗ Ĵ2
2

)
= Ĵ2

1 ⊗ Ĵ2
2 = Ĵ2

2Ĵ
2
1, (222)
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so the commutator is indeed zero. Lastly we see that Ĵ2
1 (and similarly also

Ĵ2
2) commutes with all other operators since Ĵ2

1 commutes with any Ĵ1i (this

is the usual relation
[
Ĵi, Ĵ

2
]

= 0 which holds for any spin) and also with any

Ĵ2i (since they act on different spins).
Thus we can instead choose Ĵ2

1, Ĵ
2
2, Ĵ

2, Ĵz as the operators which will clas-
sify our states. These are states |j,m, j1, j2〉 given by the total angular mo-
mentum j and its projection m plus the individual spins j1 and j2. Notice
that the individual spin projections m1 and m2 in this basis are not certain.
This is because

[
Ĵ2, Ĵ1z

]
6= 0 (and similarly for Ĵ2z so that one cannot at the

same time give total spin and individual spin projections. To be completely
clear, let us give the action of the operators on their eigenstates. First the
states which are eigenstates of the individual spins

Ĵ2
1|j1,m1; j2,m2〉 = h̄2j1(j1 + 1)|j1,m1; j2,m2〉,

Ĵ2
2|j1,m1; j2,m2〉 = h̄2j2(j2 + 1)|j1,m1; j2,m2〉,

Ĵ1z|j1,m1; j2,m2〉 = h̄m1|j1,m1; j2,m2〉, (223)

Ĵ2z|j1,m1; j2,m2〉 = h̄m2|j1,m1; j2,m2〉.

Ĵ2
1|j1, j2; j,m〉 = h̄2j1(j1 + 1)|j1, j2; j,m〉,

Ĵ2
2|j1, j2; j,m〉 = h̄2j2(j2 + 1)|j1, j2; j,m〉,

Ĵ2|j1, j2; j,m〉 = h̄2j(j + 1)|j1, j2; j,m〉, (224)

Ĵz|j1, j2; j,m〉 = h̄m|j1, j2; j,m〉

To find how a state transforms in the general case what we need to do is
to write any state where the individual particles have fixed angular momenta
|j1,m1; j2,m2〉 in terms of states |j1, j2; j,m〉 which have well defined proper-
ties under rotation. Actually we will do the opposite (write |j1, j2; j,m〉 as
a linear combination of |j1,m1; j2,m2〉) but that does not matter since the
transformation is invertible. Also, to avoid cluttering the formulas we will
not write j1 and j2 everywhere since they are the same for all states and to
keep track of which states are of which type we introduce the notation

|j,m〉 ≡ |j1, j2; j,m〉,
|m1,m2〉〉 ≡ |j1,m1; j2,m2〉. (225)

Our goal is now to find the relation between these states

|j,m〉 =
∑

m1,m2

cm1,m2|m1,m2〉〉. (226)
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This we will do in several steps. First let us see that the space of all |m1,m2〉
is finite dimensional with a total number of (2j1 + 1)(2j2 + 1) states. This is
because each spin (j1 and j2) can separately have 2j1 +1 and 2j2 +1 different
values of the m quantum number respectively. However, we do not need to
sum over all these states in the sum (226) since for fixed m we can use that
Ĵz = Ĵ1z + Ĵ2z and since we know that

Ĵz|j,m〉 = m|j,m〉,(
Ĵ1z + Ĵ2z

)
|m1,m2〉〉 = (m1 +m2) |m1,m2〉〉, (227)

we immediately see that 〈〈m1,m2|j,m〉 = 0 if m 6= m1 + m2. This follows
from the fact that

0 = 〈〈m1,m2|
(
Ĵz − Ĵ1z − Ĵ2z

)
|j,m〉 = (m−m1 −m2) 〈〈m1,m2|j,m〉. (228)

So for each fixed m on the left hand side of the equation (226) we need only
states with m1 +m2 = m on the right hand side. It is useful to know exactly
how many states withm1+m2 = m there are for each fixedm. To find this we
draw the allowed states as points in the (m1,m2) plane. Here each diagonal

Figure 4: The allowed states for j1 = 7/2 and j2 = 2

line going from upper left to lower right goes through points with the same
value of m1 + m2. From the picture it is immediately obvious that there is
always only one state with maximal value of mmax = m1 + m2 = j1 + j2.
When we go down one level to states with m = j1 + j2 − 1 there are two
states, |j1 − 1, j2〉〉 and |j1, j2 − 1〉〉. Going down in m once more gives us
one more state and so on. However, from the picture we see that something
happens when we get to the diagonal which hits the lower right corner (that
is, assuming that j1 ≥ j2 as is true in the picture, for m = (j1 + j2)− 2j2 =
j1 − j2 ≥ 0). After that, going down in m does not give new states but the
number of states is constant for each new m. When we get to the diagonal
which hits the upper left corner (this is for m = j2 − j1 ≤ 0) something
again happens, after that the number of states starts to decrease with one
each time until we reach the single state in the lower left corner which has
m = −j1 − j2. Thus we can write for the number of |m1,m2〉〉 states (in the
j1 ≥ j2 case)

0 if |m| > j1 + j2,
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j1 + j2 + 1− |m| if j1 + j2 ≥ |m| ≥ j1 − j2, (229)

2j2 + 1 if j1 − j2 ≥ |m| ≥ 0.

Let us now look at the |j,m〉 states. From the above discussion we found
that the maximal m that we can have is mmax = j1 + j2. Therefore we see
that there can be no |j,m〉 states with j > j1 + j2 (if there were, there would
be states states with m = j > j1 + j2 which we just showed that there are
not). The question is how many of each states with j ≤ j1 + j2 we can have.
Let us start with the unique state with maximal m = j1 + j2. From our
discussion we know that it has to be the state |j1 + j2, j1 + j2〉 or, in other
words, that it is the highest weight state in the j = j1 + j2 representation.
We can get all the states in the representation by acting repeatedly with Ĵ−
on this state. At the next level with m = mmax − 1 we already have one
state, namely the state we got by acting with Ĵ− on |j1 + j2, j1 + j2〉 (that is
|j1 + j2, j1 + j2 − 1〉). However, we know from our counting of |m1,m2〉〉 states
that at this level there should be two states. The other state thus have to
be the highest weight state in a representation with j = j1 + j2 − 1, that is
a state which we can write as |j1 + j2 − 1, j1 + j2 − 1〉. We can continue in
this fashion going down in m and filling out the states we find in the figure
When we get to the point where m = j1 − j2 we know that there are no
new states at the next m level. This we have to interpret that we do not get
any new representations going lower in m. In fact, we can check that what
we have is everything by counting the states. Since we know that we have
(2j1 + 1)(2j2 + 1) states of |m1,m2〉〉 type, we should have the same number
of states of |j,m〉 type. In fact we have (again we assume j1 ≥ j2)

j1+j2∑
j=j1−j2

(2j + 1) =
2j2+1∑
j′=1

(2 (j′ + j1 − j2 − 1) + 1) = (2j1 + 1)(2j2 + 1), (230)

so everything seems to work out.
We have thus learned that in a system with two independent angular

momenta j1 and j2 the total angular momenta j of the system has to satisfy
|j1 − j2| ≤ j ≤ j1 + j2 and that there is one and only one state with a
particular value of j and m.
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2.6 Clebsh-Gordan coefficients

Let us continue what we did in the last section and try to find explicitly the
expansion coefficients cm1,m2 in the expansion (226). Actually, the notation
we will use is 〈〈m1,m2|j,m〉. These numbers are called Clebsh-Gordan coef-
ficients. Sometimes one also sees in the literature the so called 3j-symbols.
They are related to the Clebsh-Gordan coefficients by

〈〈m1,m2|j,m〉 = (−1)j1−j2+m
√

2j + 1

(
j1 j2 j
m1 m2 −m

)
, (231)

but we will not use them here. The Clebsh-Gordan coefficients are conven-
tionally chosen to be real so that

〈〈m1,m2|j,m〉 = 〈j,m|m1,m2〉〉. (232)

Also, since the states |m1,m2〉〉 or the states |j,m〉 form a complete basis
in the subspace of states of two angular momenta j1 and j2 we have the
following relations (in this subspace)

1̂ =
∑

m1,m2

|m1,m2〉〉〈〈m1,m2| =
∑
j,m

|j,m〉〈j,m|, (233)

where the sums are over the “allowed” values of the eigenvalues only. This
leads to the following relations between the Clebsh-Gordan coefficients

δj,j′δm,m′ = 〈j,m|j′,m′〉 =
∑

m1,m2

〈j,m|m1,m2〉〉〈〈m1,m2|j′,m′〉 =∑
m1,m2

〈〈m1,m2|j,m〉〈〈m1,m2|j′,m′〉, (234)

and similarly

δm1,m′
1
δm2,m′

2
= 〈〈m1,m2|m′

1,m
′
2〉〉 =

∑
j,m

〈〈m1,m2|j,m〉〈j,m|m′
1,m

′
2〉〉 =

∑
j,m

〈〈m1,m2|j,m〉〈〈m′
1,m

′
2|j,m〉.(235)

It is certainly possible to calculate arbitrary formulas for the Clebsh-
Gordan coefficients. For instance, the 3j-symbols are often listed in tables.
However, I will not present such a formula which is often hard to read and
does not say very much. Instead I will give you a prescription how to calculate
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them yourselves in any given case. The method is built on the way we
calculated the allowed states in the previous section. To be concrete, let us
use our example of the previous section of adding a spin 7

2
and a spin 2. The

state with the highest value of m = j1 + j2 (11
2

in our case) is given to us for
free. Since there is only one |j,m〉 state as well as |m1,m2〉〉 state they must
be equal. That is

|11

2
,
11

2
〉 = |7

2
, 2〉〉, (236)

and the Clebsh-Gordan coefficient is of course

〈〈7
2
, 2|11

2
,
11

2
〉 = 1. (237)

Notice that the arbitrary phase factor that could have appeared in (236) was
eliminated by requiring that the Clebsh-Gordan coefficients are real (and in
this case positive). To find the other states in the 11

2
representation we can

act on (236) with the lowering operator Ĵ− = Ĵx − iĴy. The action on the
left hand side is easy to find. Using the regular formulas we get

Ĵ−|
11

2
,
11

2
〉 = h̄

√
11|11

2
,
9

2
〉. (238)

To find the action of Ĵ− on the right hand side of (236) we have to use that

Ĵ− = Ĵx − iĴy =
(
Ĵ1x + Ĵ2x

)
− i

(
Ĵ1y + Ĵ2y

)
= Ĵ1− + Ĵ2−, (239)

which tells us that

Ĵ−|
7

2
, 2〉〉 =

(
Ĵ1−|

7

2
,
7

2
〉
)
⊗ |2, 2〉+ |7

2
,
7

2
〉 ⊗

(
Ĵ2−|2, 2〉

)
=(

h̄
√

7|7
2
,
5

2
〉
)
⊗ |2, 2〉+ |7

2
,
7

2
〉 ⊗ (h̄2|2, 1〉) = h̄

(√
7|5

2
, 2〉〉+ 2|7

2
, 1〉〉

)
.(240)

Equating the left and right hand sides we find

|11

2
,
9

2
〉 =

√
7

11
|5
2
, 2〉〉+

√
4

11
|7
2
, 1〉〉, (241)

which gives us the non-zero Clebsh-Gordan coefficients

〈〈5
2
, 2|11

2
,
9

2
〉 =

√
7

11
,

〈〈7
2
, 1|11

2
,
9

2
〉 =

√
4

11
. (242)
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It is gratifying to see that the state (241) comes out automatically normalized
as it should. Using Ĵ− we could now continue to find all 12 states in the spin
11
2

representation but we will not do so here. Instead let us look at the next
to highest m = j1 + j2−1 (9

2
in our case). We know that there are two states

with this value of m but we have only found one so far (241). We also know
that the second state is the highest weight state in a new (in this case spin
9
2

representation. We should therefore be able to write

|9
2
,
9

2
〉 = a|5

2
, 2〉〉+ b|7

2
, 1〉〉, (243)

for some unknown constants a and b. The constants we can determine by
acting with Ĵ+ on both sides of the equation. Exactly similar to how we
found the Ĵ− action we now find

0 = Ĵ+|
9

2
,
9

2
〉 = h̄

(
a
√

7|7
2
, 2〉〉+ b2|7

2
, 2〉〉

)
. (244)

In order for this to be true we have to have
√

7a+ 2b = 0 (245)

Together with the requirement that the state should be normalized we get

|9
2
,
9

2
〉 =

√
7

11
|7
2
, 1〉〉 −

√
4

11
|5
2
, 2〉〉, (246)

where we again have fixed an arbitrary phase by the requirement that the
Clebsh-Gordan coefficients should all be real and by the convention that the
state with the maximum m1 value should also be positive. Notice that this
state comes out automatically orthogonal to (241) as it should. This result
gives rise to the non-zero Clebsh-Gordan coefficients

〈〈7
2
, 1|9

2
,
9

2
〉 =

√
7

11
,

〈〈5
2
, 2|9

2
,
9

2
〉 = −

√
4

11
. (247)

By using the ladder operators Ĵ± in this way we can go on and find all
the non-zero Clebsh-Gordan coefficients. You can as an exercise try to find
the expression for the |3

2
, 1

2
〉 state in terms of the |m1,m2〉〉 states. The

calculation is not too difficult. You need to act once with Ĵ+ once with
Ĵ− and use the normalization condition. The answer I believe should be

|3
2
, 1

2
〉 =

√
3
14
|5
2
,−2〉〉 −

√
2
7
|3
2
,−1〉〉+

√
9
35
|1
2
, 0〉〉 −

√
6
35
|−1

2
, 1〉〉+

√
1
14
|−3

2
, 2〉〉.
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2.6.1 An application

As an application of the above formalism, let us consider a system of two
nucleons (a nucleon is particle that you find in the nucleus of the atom,
that is a neutron or a proton). The system is described by the relative
coordinate of the two nucleons r and furthermore each of the two nucleons
carry spin 1

2
(let us call the spin operators acting on each spin Ŝ1 and Ŝ2

respectively). The nucleons interact in several ways. First of all there is a
regular (strong) force between them, second of all their spins interact with
the orbital angular momenta L = r × p and finally there is an interaction
between the spins themselves. The system should be rotationally invariant
so that the Hamiltonian should be rotationally invariant. If the mass of a
nucleon is M and with the definition Ŝ = Ŝ1 + Ŝ2 then we can write the
Hamiltonian as

Ĥ =
p̂2

M
+ V1(r) + V2(r)L̂ · Ŝ + V3(r)Ŝ1 · Ŝ2, (248)

for some functions Vi(r). V1(r) describe the force interaction, V2(r) describes
the spin-orbit interaction and V3(r) describes the spin-spin interaction. There
are other possible interaction terms but we will not consider them here.
This is a pretty complicated system so it is important to find the “correct”
variables in which the description is as simple as possible. To do this we will
try to find as many (hermitian) operators as possible which commute with
the Hamiltonian. Then these can be used to classify the eigenstates, or in
other words, using eigenstates of these operators, the Hamiltonian will take
the simplest possible form. We see that the Hamiltonian commutes with the
operators L̂2, Ŝ2

1, Ŝ
2
2, Ŝ

2 and defining the operator Ĵ = L̂ + Ŝ we see that the
Hamiltonian also commutes with Ĵ2 and Ĵz. Notice however that it does not
commute with the operators Ŝ1z, Ŝ2z or L̂z since the L̂ · Ŝ term contains for
instance L̂x(Ŝ1x + Ŝ2x). We can therefore use the states

|l, s; j,m〉, (249)

which are eigenstates of L̂2, Ŝ2, Ĵ2, Ĵz (and also of Ŝ2
1, Ŝ

2
2) as our basis. Now

we use that we can write

2Ŝ1 · Ŝ2 = Ŝ2 − Ŝ2
1 − Ŝ2

2

2L̂ · Ŝ = Ĵ2 − L̂2 − Ŝ2. (250)
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That means that when we act with the Hamiltonian on one of the basis states
we get

Ĥ|l, s; j,m〉 =(
p̂2

M
+ V1(r) +

h̄2

2
V2(r) (j(j + 1)− l(l + 1)− s(s+ 1)) + (251)

h̄2

2
V3(r) (s(s+ 1)− s1(s1 + 1)− s2(s2 + 1))

)
|l, s; j,m〉. (252)

From our discussion about addition of angular momenta we know that since
s1 = s2 = 1

2
, s can be only 0 or 1. Thus when the Hamiltonian acts on s = 0

states we have

Ĥ =
p̂2

M
+ V1(r) +

h̄2

2
V2(r) (j(j + 1)− l(l + 1))− 3h̄2

4
V3(r), (253)

and when it acts on s = 1 states we have

Ĥ =
p̂2

M
+ V1(r) +

h̄2

2
V2(r) (j(j + 1)− l(l + 1)− 2) +

h̄2

4
V3(r), (254)

which is a considerable simplification. Thus we will try to find eigenfunctions
of the Hamiltonian which are also eigenstates of L̂2, Ŝ2, Ĵ2 and Ĵz An ansatz
would be

|ψ〉 = |El,s,j,m〉 ⊗ |l, s; j,m〉. (255)

The state |El,s,j,m〉 contains all the radial dependence of the wave function
while the |l, s; j,m〉, since it contains all the information about rotations,
contain all the angular dependence. We can now take the coordinate repre-
sentation of the eigenvalue equation

〈x|Ĥ|ψ〉 = h̄2
∑

ml,ms

{
− 1

M

(
1

r

d2

dr2
r − l(l + 1)

r2

)
+ Vl,s,j

}
×

fl,s,j,m(r)〈θ, φ|l, s, j,m〉, (256)

where fl,s,j,m(r) = 〈r|El,s,j,m〉 is the coordinate representation of radial part
of the wave function and where Vl,s,j(r) is an effective potential of the form

Vl,s,j =
1

h̄2V1(r) +
V2(r)

2
(j(j + 1)− l(l + 1)− s(s+ 1))

+
V3(r)

2

(
s(s+ 1)− 3

2

)
. (257)
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To derive this result we also used that the coordinate representation of the
operator p̂2 can be written

〈x|p̂2|ψ〉 = − h̄
2

r

d2

dr2
(r〈x|ψ〉) +

1

r2
〈x|L̂2|ψ〉, (258)

and that the action of L̂2 on the state is known. When we want to find the
eigenfunctions of the Hamiltonian what is left for us to do is therefore solve
the one dimensional differential equation(

− 1

M

1

r

d2

dr2
r + Vl,s,j(r)

)
fl,s,j,m(r) =

E

h̄2fl,s,j,m(r). (259)

where the potential depends on the quantum number j, s and l

V (r) =
(
V1

h̄2 −
3V3

4

)
+ l(l + 1)

(
1

Mr2
− V2

2

)
+s(s+ 1)

(
V3

2
− V2

2

)
+ j(j + 1)

V2

2
. (260)

Since the effective potential do not depend on the quantum number m the
wave functions fl,s,j,m will also not depend on m and the spectrum will be
degenerate in m, that is, each energy eigenvalue will be (2j + 1) times de-
generate.

To find the explicit angular dependence of the states 〈θ, φ|l, s; j,m〉 one has
to use the Clebsh-Gordan composition of the state |l, s; j,m〉 = |j,m〉 into the
|l, s; ml,ms〉 = |ml,ms〉〉 basis. Namely, since we know 〈θ, φ|l,ml〉 = Y ml

l (θ, φ)
we have

〈θ, φ|l, s; j,m〉 =
∑

ml,ms

Y ml
l (θ, φ)|s,ms〉〈〈ml,ms|j,m〉, (261)

where the last factor are the Clebsh-Gordan coefficients for the decomposition
of the |j.m〉 states into |ml,ms〉〉 states.

2.7 Tensor operators

Until now we have been interested in how states transform under rotations.
Now we will take a look at how operators transform under rotations. A tensor
operator is really a set of operators whose expectation values transform into
each other in exactly the same way as classical tensors when one performs
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a rotation of the system. The simplest case is a scalar operator. In this
case the set contains only one operator which consequently transforms into
itself under rotation (i.e. it does not transform at all). The simplest non-
trivial example is given by a vector operator. It is given by a set of three
operators, let us call them V̂x, V̂y and V̂z, or, collectively as V̂i. To find out
how it transforms under rotations we first notice that under a rotation any
state |α〉 transforms into R̂|α〉 and thus we find the quantum mechanical
transformation of an arbitrary expectation value as

〈α|V̂i|α〉 → 〈α|R̂†V̂iR̂|α〉. (262)

The requirement that this should transform as a classical vector for the ex-
pectation value of any state |α〉 now gives us

R̂†V̂iR̂ =
∑
k

R k
i V̂k, (263)

where R k
i is the classical rotation matrix. To be concrete, let us do this

explicitly for an infinitesimal rotation around the z-axis. We have(
1 +

i

h̄
εĴz

)
V̂x

(
1− i

h̄
εĴz

)
= V̂x − εV̂y,(

1 +
i

h̄
εĴz

)
V̂y

(
1− i

h̄
εĴz

)
= V̂y + εV̂x, (264)(

1 +
i

h̄
εĴz

)
V̂z

(
1− i

h̄
εĴz

)
= V̂z.

Expanding and equating terms of order ε on both sides gives us the commu-
tation relations [

Ĵz, V̂x

]
= ih̄V̂y,[

Ĵz, V̂y

]
= −ih̄V̂x, (265)[

Ĵz, V̂z

]
= 0.

The same calculation for infinitesimal rotations around the x and the y axis
gives the complete commutation relations[

Ĵi, V̂j

]
= ih̄εijkV̂k. (266)

In fact, we can now turn things around and take this as the definition of a
vector operator. Here it is interesting to observe that the classical rotation
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matrix is the same as the spin 1 representation of the quantum operator R̂†

(notice the hermitian conjugation) although written in complex notation.
Namely, if we reshuffle the components of V̂i a bit and define

V̂+1 = − 1√
2

(Vx + iVy) ,

V̂0 = Vz, (267)

V̂−1 =
1√
2

(Vx − iVy) ,

we can write the classical rotation as

R̂†V̂qR̂ =
1∑

q′=−1

V̂q′ 〈1, q′|R̂†|1, q〉. (268)

Let us try it explicitly in the rotation around the z-axis that we computed
in (264). Classically we can compute that the rotation should give

V̂+1 → V̂+1 + iεV̂+1,

V̂0 → V̂0, (269)

V̂−1 → V̂−1 − iεV̂−1,

which we can write in matrix form

(
V̂+1 V̂0 V̂−1

)
→
(
V̂+1 V̂0 V̂−1

) 1 + iε 0 0
0 1 0
0 0 1− iε

 , (270)

in which we indeed recognize the infinitesimal form of the spin 1 represen-
tation of the rotation matrix R̂†

z = e
i
h̄

Ĵzε ≈ 1 + i
h̄
Ĵzε. This property can

similarly be checked for the other rotations around the x or the y axis. (Do
it as an exercise!)

We may now similarly define other types of tensor operators. For instance,
a classical tensor Tijk... transform under classical rotations as

Tijk... →
∑
i′j′k′

R i′

i R j′

j R k′

k · · ·Ti′j′k′..., (271)

so the definition of a tensor operator would be that

R̂†T̂ijk...R̂ =
∑
i′j′k′

R i′

i R j′

j R k′

k · · · T̂i′j′k′..., (272)
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or, infinitesimally[
Ĵa, T̂ijk...

]
= ih̄

(
ε i′

ai T̂i′jk... + ε j′

aj T̂ij′k... + ε k′

ak T̂ijk′... + . . .
)
. (273)

This is all fine except for one thing. It turns out that the components of an
arbitrary tensor operator T̂ijk... do not transform into each other irreducibly.
That is, there are subgroups of components which transform into each other
and do not mix with the other components. This indicates that the tensor
operators defined in this way are not the tensors we should use if we want
to consider operators that transform as simple as possible under rotations.
In other words, we need to decompose the tensor operators as defined above
into their irreducible subsets just as we needed to decompose the angular
momentum states into irreducible subsets. However, the example above with
the vector operator teaches us how to find the irreducible subsets. Namely,
we need tensors such that the classical rotation can be written using an
irreducible representation of the rotation operator. That is that we can write

T̂ (k)
q →

∑
q′
T̂

(k)
q′ 〈k, q′|R̂†|k, q〉, (274)

for some fixed k so that the rotation operator is in the k (that is the 2k + 1
dimensional) representation. A tensor T̂ (k)

q that transforms in this irreducible
way is called an irreducible tensor or a spherical tensor. Thus, the defining
equation for spherical tensors of rank k is

R̂†T̂ (k)
q R̂ =

∑
q′
T̂

(k)
q′ 〈k, q′|R̂†|k, q〉, (275)

or infinitesimally [
Ĵi, T̂

(k)
q

]
=
∑
q′
T̂

(k)
q′ 〈k, q′|Ĵi|k, q〉. (276)

Since the matrix elements of Ĵ± are nicer, let us write the commutation
relations in terms of them as[

Ĵ±, T̂
(k)
q

]
=
∑
q′
T̂

(k)
q′ 〈k, q′|Ĵ±|k, q〉 =

∑
q′
h̄
√
k(k + 1)− q(q ± 1)T̂

(k)
q′ 〈k, q′|k, q± 1〉, (277)
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and using the orthogonality of the angular momentum eigenstates we have[
Ĵ±, T̂

(k)
q

]
= h̄

√
k(k + 1)− q(q ± 1)T̂

(k)
q±1. (278)

For Ĵz we similarly have[
Ĵz, T̂

(k)
q

]
=
∑
q′
T̂

(k)
q′ 〈k, q′|Ĵz|k, q〉 =

∑
q′
T̂

(k)
q′ h̄q〈k, q′|k, q〉 = h̄qT̂ (k)

q . (279)

Thus we see that the commutation relations are very similar to the way the
angular momentum operators act on the angular momentum eigenstates.

One may ask if it is always possible to decompose an ordinary tensor
operator transforming according to (271) into “sub tensors” transforming
according to (274). That this is true one may argue as follows. We know
that each R i′

i is a spin 1 representation of the rotation operator. Thus Tijk...

actually transform like a collection of independent spin 1 spins so that the
problem of decomposing the tensor is the same as finding the total angular
momenta when one adds a number of independent spin 1 spins. This we have
shown how to do in the previous section, it is essentially done by finding the
Clebsh-Gordan coefficients. Let us illustrate this with a simple example. We
can make a two index tensor by multiplying two vectors. That is define

Tij = UiVj. (280)

This is usually decomposed in the following suggestive way

Tij =
U ·V

3
δij +

(UiVj − ViUj)

2
+

(
(UiVj + ViUj)

2
− U ·V

3
δij

)
. (281)

The first term in this “expansion” is just the scalar product of the two vectors
U and V. It is clear that it is invariant under rotations. Thus, it forms an
invariant subgroup of tensor components. The second term is nothing but
the cross product U × V which transforms like a vector so it also forms
an irreducible subcomponent. The third term is a symmetric and traceless
tensor. It can be shown to form a spin 2 representation. Now let us try
to see the same thing by using the “sum of spins” idea. The spin 0 wave
function that we get when we add two spin 1 spins we find using the methods
introduced earlier to be

|0, 0〉 =
1√
3

(|1,−1〉〉 − |0, 0〉〉+ |−1, 1〉〉) . (282)
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Thus we expect that the combination

T+1,−1 − T0,0 + T−1,+1, (283)

should transform like a scalar (that is, not transform at all). Using (267) we
can see that this combination is indeed equal to (minus) the scalar product
of U and V so that this is indeed true. The other components can be verified
similarly (exercise!).

2.8 The Wigner-Eckart theorem

So far we have been looking at how the spherical tensor operators transform
under rotations. Now let us take a look at how they act on states. This in-
formation is contained in (infinitesimal version of) their definition as derived
in the previous section[

Ĵ±, T̂
(k)
q

]
= h̄

√
k(k + 1)− q(q ± 1)T̂

(k)
q±1,[

Ĵz, T̂
(k)
q

]
= h̄qT̂ (k)

q . (284)

Using these relations we may first of all, find the rotational properties of
states created by T̂ (k)

q acting on states that do not transform under rotations
(that is on the state |0, 0〉). Namely, using the commutation relations above
and that Ĵ acts trivially on |0, 0〉, we have

Ĵ±T̂
(k)
q |0, 0〉 =

[
Ĵ±, T̂

(k)
q

]
|0, 0〉 = h̄

√
k(k + 1)− q(q ± 1)T̂

(k)
q±1|0, 0〉,

ĴzT̂
(k)
q |0, 0〉 =

[
Ĵz, T̂

(k)
q

]
|0, 0〉 = h̄qT̂ (k)

q |0, 0〉. (285)

Thus we see that the angular momentum operators act on T̂ (k)
q |0, 0〉 in exactly

the same way as on a state |j,m〉 with j = k and m = q. That also tells
us something about the matrix elements of the operator T̂ (k)

q . Namely, since
〈j,m|k, q〉 6= 0 only if j = k and q = m we have

〈j,m|T̂ (k)
q |0, 0〉 6= 0 iff j = k, m = q. (286)

This (including the generalization to other states than |0, 0〉) is essentially
the Wigner-Eckart theorem. To be able to state it in all generality, we need
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now study what T̂ (k)
q does to an arbitrary state |j,m〉. In the same way as

above we find

ĴzT̂
(k)
q |j,m〉 = T̂ (k)

q Ĵz|j,m〉+
[
Ĵz, T̂

(k)
q

]
|j,m〉 =

h̄mT̂ (k)
q |j,m〉+ h̄qT̂ (k)

q |j,m〉 (287)

Ĵ±T̂
(k)
q |j,m〉 = T̂ (k)

q Ĵ±|j,m〉+
[
Ĵ±, T̂

(k)
q

]
|j,m〉 =

h̄
√
j(j + 1)−m(m± 1)T̂ (k)

q |j,m± 1〉+

h̄
√
k(k + 1)− q(q ± 1)T̂

(k)
q±1|j,m〉.

Compare this to how the angular momentum operators act on a product
state |j,m〉⊗ |k, q〉 (that is, on a state describing two independent spins, one
with spin j and one with spin k). Then we have

Ĵz (|j,m〉 ⊗ |k, q〉) =
(
Ĵz|j,m〉

)
⊗ |k, q〉+ |j,m〉 ⊗

(
Ĵz|k, q〉

)
=

(h̄m+ h̄q) |j,m〉 ⊗ |k, q〉, (288)

Ĵ± (|j,m〉 ⊗ |k, q〉) =
(
Ĵ±|j,m〉

)
⊗ |k, q〉+ |j,m〉 ⊗

(
Ĵ±|k, q〉

)
=

h̄
√
j(j + 1)−m(m± 1)|j,m± 1〉 ⊗ |k, q〉+

h̄
√
k(k + 1)− q(q ± 1)|j,m〉 ⊗ |k, q± 1〉. (289)

Comparing these two results we see that they are exactly analogous!! This
means that we can expect that the state T̂ (k)

q |j,m〉 behaves (from the point
of view of rotations) like the product state |m, q〉〉 = |j,m〉 ⊗ |k, q〉. From
our previous discussion we know that we can decompose this into irreducible
components

|J,M〉 =
∑
m,q

cm,q|m, q〉〉, (290)

where the constants cm,q are the Clebsh-Gordan coefficients. Thus we may

for instance expect that 〈J,M|T̂ (k)
q |j,m〉 6= 0 iff the Clebsh-Gordan coefficient

〈〈m, q|J,M〉 is non-zero. As we know, this requires that |j − k| ≤ J ≤ j + k
and M = m+ q.

Let us now try to prove this a little bit more carefully. To this end define

|A(J,M)〉 =
∑
q′,m′

T̂
(k)
q′ |j,m′〉〈〈m′, q′|J,M〉. (291)
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Then we have ∑
J,M

|A(J,M)〉〈J,M|m, q〉〉 = (292)

∑
m′,q′

T̂
(k)
q′ |j,m′〉〈〈m′, q′|

∑
J,M

|J,M〉〈J,M|

 |m, q〉〉.
and since

∑
J,M |J,M〉〈J,M| = 1̂ in each subspace of fixed J , we have

T̂ (k)
q |j,m〉 =

∑
J,M

|A(J,M)〉〈J,M|m, q〉〉, (293)

or, that

〈J,M|T̂ (k)
q |j,m〉 =

∑
J ′,M ′

〈J,M|A(J′,M′)〉〈J′,M′|m, q〉〉. (294)

We need to find what kind of state |A(J,M〉 is. This we do by acting with
the angular momentum operators on it. Using the commutation relations of
Ĵ with T̂ we get

Ĵz|A(J,M)〉 =
∑
q,m

h̄ (q +m) T̂ (k)
q |j,m〉〈〈m, q|J,M〉. (295)

Since we know that the Clebsh-Gordan coefficient is non-zero if and only if
q +m = M we may write this as

Ĵz|A(J,M)〉 = h̄M |A(J,M)〉. (296)

Similarly we have

Ĵ±|A(J,M)〉 =
∑
q,m

(
h̄
√
j(j + 1)−m(m± 1)T̂ (k)

q |j,m± 1〉〈〈m, q|J,M〉+

h̄
√
k(k + 1)− q(q ± 1)T̂

(k)
q±1|j,m〉〈〈m, q|J,M〉

)
.(297)

By shifting the sums we may write this as

∑
q,m

T̂ (k)
q |j,m〉

(
h̄
√

(j(j + 1)−m(m∓ 1)〈〈m∓ 1, q|J,M〉

+h̄
√
k(k + 1)− q(q ∓ 1)〈〈m, q∓ 1|J,M〉

)
. (298)
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Now we can use a property of the Clebsh-Gordan coefficients which can be
easily proved using the angular momentum commutation relations√

j(j + 1)−m(m∓ 1)〈〈m∓ 1, q|J,M〉+√
k(k + 1)− q(q ∓ 1)〈〈m, q∓ 1|J,M〉 =√
J(J + 1)−M(M ± 1)〈〈m, q|J,M± 1〉. (299)

This gives us

Ĵ±|A(J,M)〉 = h̄
√
J(J + 1)−M(M ± 1)|A(J,M± 1)〉. (300)

Thus we see that |A(J,M)〉 fulfills exactly the same relations as the state
|J,M〉. Thus |A(J,M)〉 must be proportional to |J,M〉 with a constant of
proportionality that does not depend on M but only on J ! That is, the
constant of proportionality can be different for different J but for each fixed
J it is the same for all M . We thus have

〈J,M|A(J′,M′)〉 = δJ,J ′δM,M ′
〈J ||T̂ (k)||j〉√

2j + 1
, (301)

where we (conventionally) have introduced the so called reduced matrix el-
ement 〈J ||T̂ (k)||j〉 to write the constant of proportionality. As indicated it
depends on the j, J quantum number and of course on the tensor T̂ (k), but it
does not depend on the particular M,m and q quantum numbers. The fac-
tor 1

2j+1
is purely conventional. This enables us to state the Wigner-Eckart

theorem

〈J,M|T̂ (k)
q |j,m〉 =

〈J ||T̂ (k)||j〉√
2j + 1

〈〈m, q|J,M〉. (302)

This tells us many important things about the matrix elements of spherical
tensors. First of all, the matrix element is zero unless |j − k| ≤ J ≤ j + k
and M = m + q and secondly, for fixed J and j, the rotational properties
of the spherical tensor T̂ (k) are completely contained in the Clebsh-Gordan
coefficients 〈〈m, q|J,M〉. In particular, we need only to calculate one matrix
element for some given (preferably particularly simple) values of M,m and
q and the other matrix elements follow automatically.
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3 Scattering theory

Let us now turn our attention to scattering theory. In scattering theory
we study quantum mechanical problems where we have some incoming free
particles (state) which scatter on something located at some particular point
in space. This means that the Hamiltonian in these problems is always of
the type

Ĥ =
p2

2m
+ V (x), (303)

where the potential V (x) is non-zero only in the small region of space where
the interaction (scattering) takes place. Thus the Schrödinger equation can
almost everywhere be written

p2

2m
|ψ〉 = ih̄

∂

∂t
|ψ〉, (304)

which is just the Schrödinger equation for a free particle with the usual plane
wave solutions. We thus expect that the full solution should look very much
like a plane wave. We will study only elastic scattering which means that
the energy (and probability) will be conserved in the process and we will
study the static problem by throwing a continuous stream of particles at the
target rather than particles one by one. The question will thus be: if I have a
certain incident stream of particles, what out-coming stream of particles will
I have. This makes it possible to study the time independent Schrödinger
equation which simplifies things considerably.

3.1 The Lippman-Schwinger equation

Let us thus study the (time independent) Schrödinger equation(
Ĥ0 + V̂

)
|ψ〉 = E|ψ〉, (305)

where V̂ is non-zero only in a small region of space. Formally, if we knew
how to “divide” by an operator, we could write the (implicit) solution to this
equation as

|ψ〉 =
1

E − Ĥ0

V̂ |ψ〉+ |φ〉. (306)
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Here |φ〉 is an arbitrary state which satisfies Ĥ0|φ〉 = E|φ〉. This ensures
that when we hit both sides of the equation with the operator E− Ĥ0 we get
back the original equation. In the limit where the potential vanishes we get
that |ψ〉 = |φ〉. This way of writing the Schrödinger equation is known as
the Lippman-Schwinger equation. In the form it has now it is purely formal
since the operator 1

E−Ĥ0
is singular when acting on for instance |φ〉. To make

sense of it, we need to give a prescription how make the inverse operator
always well defined. This we do in a fashion inspired by the propagator in
the first section. Namely, we let

1

E − Ĥ0

→ lim
ε→0

1

E − Ĥ0 ± iε
, (307)

which means that we do all calculations with ε 6= 0, giving us a well defined
inverse operator, and only in the end do we let ε → 0. The sign of ε we
will have to determine from the physical situation, just as in the propagator
case in the first section. In the coordinate basis we can therefore write this
equation as

〈x|ψ〉 = 〈x|φ〉+ 〈x| 1

E − Ĥ0 ± iε
V̂ |ψ〉, (308)

and, inserting the unit operator in the form 1̂ =
∫
d3x|x〉〈x| we get

〈x|ψ〉 = 〈x|φ〉+
∫
d3x′〈x| 1

E − Ĥ0 ± iε
|x′〉〈x′|V̂ |ψ〉. (309)

To be able to use this expression we need to know the form of the inverse
operator in the coordinate basis

〈x| 1

E − Ĥ0 ± iε
|x′〉 =

∫
d3pd3p′〈x|p〉〈p| 1

E − Ĥ0 ± iε
|p′〉〈p′|x′〉. (310)

Using the explicit form of the wave function 〈x|p〉 = 1

(2πh̄)
3
2
e

i
h̄
x·p and that

the states |p〉 are eigenstates of the Hamiltonian Ĥ0 = p2

2m
we get

〈x| 1

E − Ĥ0 ± iε
|x′〉 =

∫
d3pd3p′

e
i
h̄
p·x

(2πh̄)
3
2

δ(3) (p− p′)(
E − p′2

2m
± iε

) e i
h̄
p′·x′

(2πh̄)
3
2

=

1

(2πh̄)3

∫
d3p

e
i
h̄
p·(x−x′)(

E − p2

2m
± iε

) . (311)
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It is easy to see that this is in fact the Fourier transform of the free space
propagator of the first section. Namely, in the first section we computed

K(x, t) = K(x, t;x′, 0) =
∫ d3p

(2πh̄)3 e
− i

h̄
t p2

2m
+ i

h̄
p·(x−x′) t > 0,

K(x, t) = 0 t < 0. (312)

The Fourier transform (in the time coordinate) of this is

L(x,E) =
∫ ∞

0
dtK(x, t)e

i
h̄

Et, (313)

and performing the integral gives exactly the inverse operator (311). The
expression we have found is thus the propagator, but not from one particular
time to another but rather for particles with a fixed energy. This is appro-
priate for our problem where we study the static situation with a steady flow
of particles, all with the same energy E.

The integral in (311) can be performed using exactly the same methods
as when we found the original propagator. The result is

〈x| 1

E − Ĥ0 ± iε
|x′〉 = − 2m

4πh̄2

e±i|x−x′|k

|x− x′|
. (314)

Here the ± signs refer to the ±iε signs and k is related to the energy by
E = h̄2k2

2m
. Using this we may now write the Lippman-Schwinger equation as

〈x|ψ〉 = 〈x|φ〉 − 2m

h̄2

∫
d3x′

e±i|x−x′|k

4π |x− x′|
〈x′|V̂ |ψ〉. (315)

Written in this form, the equation has a very nice interpretation but to
emphasize it more clearly, let us make the assumption that the potential is
local. This means that 〈x|V̂ |x′〉 = V (x)δ(3) (x− x′). This is not a very severe
restriction, for instance, all potentials which depend only on coordinates are
in this class. For local potentials, we may write

〈x|V̂ |ψ〉 =
∫
d3x′〈x|V̂ |x′〉〈x′|ψ〉 =

V (x)
∫
d3x′δ(3) (x− x′) 〈x′|ψ〉 = V (x)〈x|ψ〉, (316)

which, inserted in the Lippman-Schwinger equation, leads to

〈x|ψ〉 = 〈x|φ〉 − 2m

h̄2

∫
d3x′

e±i|x−x′|k

4π |x− x′|
V (x′)〈x′|ψ〉. (317)
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The interpretation is as follows, on the left hand side we have the full wave
function observed at the point x. It is given, on the right hand side as the sum
of 〈x|φ〉 which is the coordinate representation of a free wave, representing
the incoming particles6, and the second term which represent the interaction
with the potential. The integral is over points where V (x′) 6= 0 since if V = 0
there are no interactions. The interaction also depends on the magnitude of
the wave function at the point x′. If the wave function is zero at x′, there is no
particle there which can interact with the potential. After the wave function
has interacted with the potential at x′ it is propagated out to x using the
free propagator. The integral sums over all possible points of interaction.

With this interpretation in the back of our minds, we can go on and sim-
plify the Lippman-Schwinger equation even further. That is, let us assume
that the point x where we observe the wave function is far away from the
region where the potential is non-zero. We can choose the origin of our co-
ordinates precisely in this region which, since x′ is also in this region, leads
to the assumption |x| � |x|′. In this limit we have

|x− x′| =
√
r2 + r′2 − 2rr′ cosα = r

√
1− 2

r′

r
cosα+

r′2

r2
≈

r − r′ cosα = r − x · x′

r
. (318)

Using this approximation, the expression for the propagator simplifies to

e±i|x−x′|k

4π |x− x′|
≈ e±ikre∓ik x·x′

r

4πr
. (319)

Since we know that the energy is not changed in the scattering process (elastic
scattering, remember) we know that the momentum of the outgoing wave is
the same as the momentum of the incoming wave. The only thing that
changes is the direction of the momenta. Thus we know that the outgoing
wave-number k′ = k x

r
. Using this and that |φ〉 = |k〉 we can write

〈x|ψ〉 =
eik·x

(2π)
3
2

− 2m

h̄2

e±ikr

4πr

∫
d3x′e∓ik′·x′V (x′)〈x′|ψ〉. (320)

6Remember that |φ〉 is a solution to the free Schrödinger equation Ĥ0|φ〉 = E|φ〉. We
will choose it to be |φ〉 = |k〉, that is, an incoming plane wave with wavenumber k related
to the momentum k = p

h̄
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The first term on the right hand side is again the incoming plane wave with
momentum p = h̄k. The second term is a spherical wave (times the integral
which does not depend on x anymore). The sign in the exponential of the
spherical wave tells us if it is moving outwards (+ sign) or inwards (− sign)
and since the physical situation that we want to describe is that the second
term represents the wave coming out after scattering on the potential we have
to choose the + sign (which also tells us to choose the + sign in the original
expression for the inverse operator). Thus we see that Lippman-Schwinger
tells us that in any scattering problem the wave-function (at large distance
from where the scattering takes place) must take the following form

〈x|ψ〉 =
1

(2π)
3
2

[
eik·x +

eikr

r
f(k,k′)

]
, (321)

where the first term on the right hand side is the incoming wave and the
second term represents the scattered, outgoing wave. The function f(k,k′)
is a function of the incoming (k) and outgoing (k’) wave numbers. In fact,
since |k| = |k′| = k it is just a function of k and the angle between the
vectors k and k′. The explicit expression for it is given by

f(k,k′) = −(2π)
3
2

4π

2m

h̄2

∫
d3x′e−ik′·x′〈x′|V̂ |ψ〉 =

−(2π)3

4π

2m

h̄2

∫
d3x′〈k′|x〉〈x′|V̂ |ψ〉 = −(2π)3

4π

2m

h̄2 〈k
′|V̂ |ψ〉 (322)

3.2 The cross section

In the experimental situation one is usually interested in shooting a contin-
uous stream of particles at a target and then measuring how much of the
stream of particles is deflected. However, the outgoing flow of particles is of
course dependent on the incoming flow. The more particles we throw in, the
more we get out. To get a number which is independent of the particular
flow we chose to use in the experiment, people have invented the concept of
cross-section. Simply said it is just the outgoing flow divided by the incoming
flow. That is, we define the differential cross section as

dσ

dΩ
dΩ =

# outgoing particles going through dΩ per unit time

# incoming particles per unit time and unit area
(323)

To be able to calculate the cross section for any process that we are interested
in, we need to figure out what the incoming and outgoing flows are in our case.
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To be able to do this we remember that the density of probability (which can
be interpreted as the density of particles) is given by ρ(x) = |ψ(x)|2. The
time derivative of the probability density is

∂ρ

∂t
=
∂ψ†

∂t
ψ + ψ†

∂ψ

∂t
, (324)

and using the Schrödinger equation (for the free particle) and its complex
conjugate

ih̄
∂ψ

∂t
= − h̄

2∇2

2m
ψ,

−ih̄∂ψ
†

∂t
= − h̄

2∇2

2m
ψ†, (325)

we can write this as

∂ρ

∂t
=

ih̄

2m

(
−
(
∇2ψ†

)
ψ + ψ†

(
∇2ψ

))
=

ih̄

2m
∇
(
ψ†∇ψ −∇ψ†ψ

)
. (326)

We see that if we define the current j = ih̄
2m

(
∇ψ†ψ − ψ†∇ψ

)
, the above

equation takes the suggestive form

∂ρ

∂t
+∇ · j = 0. (327)

This is nothing but the equation of continuity for the probability density so
we must interpret j as the probability current which is what measures the
flow of particles. To see this even more explicitly, let us write the integral
form of the continuity equation. If we call the number of particles in a volume
N it takes the form

dN

dt
+
∮

A
n · j = 0. (328)

This we interpret to mean that the change of the number of particles per unit
term (the first term) equals the flow of particles per unit time through the
surface (the second term). We read off from the second term that the flow
per unit time and unit area must be n · j. This is therefore the flux! This we
can use to compute the incoming flux for a wave function eikz

(2π)
3
2

representing

free particle moving in the z direction

jz =
ih̄

2m(2π)3

((
−ike−ikz

)
eikz − e−ikz

(
ikeikz

))
=

h̄k

m(2π)3
,

jx = jy = 0. (329)
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On the other hand, if we have a wave function

eikr

(2π)
3
2 r
f(k,k′), (330)

which represents a spherical wave propagating outwards, we can compute the
flux through the area element r2dΩ by computing r̂ · j at some large value of
r. Using

∇ψ = r̂
∂ψ

∂r
+ θ̂

1

r

∂ψ

∂θ
+ φ̂

1

r sin θ

∂ψ

∂φ
, (331)

we find

n̂ · j =
h̄k

(2π)3m

|f |2

r2
. (332)

This is the flux through the area element r2dΩ which means that through
the space angle dΩ we have h̄k

(2π)3m
|f |2 particles per unit time giving us the

expression for the differential cross section

dσ

dΩ
= |f |2 . (333)

Thus we see what we have to do to calculate the cross section. We just
find the full static wave function of the problem with the correct boundary
conditions (the incoming wave is a plane wave) and write it in such a way
that we can identify f(k,k′). This we now proceed to do in various ways.

3.3 The Born approximation

The simplest and most intuitive way to find the wave function is when the
potential V̂ is in some sense “small” and can be thought of as a perturbation.
Then we make the ansatz

|ψ〉 = |ψ(0)〉+ |ψ(1)〉+ |ψ(2)〉+ . . . , (334)

where |ψ(n)〉 should be thought of as being of order V̂ n. Inserting this into
the Lippman-Schwinger equation we get

|ψ(0)〉+ |ψ(1)〉+ |ψ(2)〉+ . . . = |φ〉+
1

E − Ĥ0 + iε
V̂
(
|ψ(0)〉+ |ψ(1)〉+ |ψ(2)〉+ . . .

)
. (335)
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Equating terms of the same order on each side of the equations gives us a set
of recursion relations

|ψ(0)〉 = |φ〉,

|ψ(1)〉 =
1

E − Ĥ0 + iε
V̂ |ψ(0)〉,

|ψ(2)〉 =
1

E − Ĥ0 + iε
V̂ |ψ(1)〉,

...
... (336)

|ψ(n)〉 =
1

E − Ĥ0 + iε
V̂ |ψ(n−1)〉,

...
...

which can be easily solved to any given order since we know that |φ〉 is a
plane wave. Then we have

|ψ(0)〉 = |φ〉,

|ψ(1)〉 =
1

E − Ĥ0 + iε
V̂ |φ〉,

|ψ(1)〉 =
1

E − Ĥ0 + iε
V̂

1

E − Ĥ0 + iε
V̂ |φ〉, (337)

...
...

Written in this way the expansion have a very nice interpretation. Namely,
since we know that 1

E−Ĥ0+iε
is the free particle propagator we get the in-

terpretation that |ψ(0)〉 is just the non-interacting incoming wave, |ψ(1)〉 is
the incoming wave interacting once with the potential and then propagat-
ing to the position where we observe the wave function. In general |ψ(n)〉 is
interpreted as the incoming wave interacting for the first time with the po-
tential, propagating like a free particle, interacting for the second time with
the potential, propagating like a free particle, interacting again and so on n
times.

Let us compute the explicit form of the cross section (or rather of f(k,k′))
to lowest non-trivial order. This result is known as the first Born approxi-
mation. In the coordinate basis we have

〈x|ψ(1)〉 = 〈x| 1

E − Ĥ0 + iε
V̂ |k〉 =

∫
d3x′〈x| 1

E − Ĥ0 + iε
|x′〉〈x′|V̂ |k〉, (338)
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where we have inserted a unit operator. This is easy to evaluate since we
have already calculated the coordinate space representation of the propagator
(314). Furthermore using that the potential is local we write

〈x|ψ(1)〉 = − 2m

4πh̄2

∫
d3x′

eik|x−x′|

|x− x′|
V (x′)

eik·x′

(2π)
3
2

, (339)

which, in the |x| � |x′| can be further simplified to

〈x|ψ(1)〉 ≈ − 2m

4πh̄2

eikr

(2π)
3
2 r

∫
d3x′ei(k−k′)·x′V (x′). (340)

Thus, to this order of approximation, the full wave function in the coordinate
representation and far away from the center of scattering is

〈x|ψ(0)〉+ 〈x|ψ(1)〉 =
1

(2π)
3
2

(
eik·x − 2m

4πh̄2

eikr

r

∫
d3x′ei(k−k′)·x′V (x′)

)
,(341)

which, when we compare it to the general form of the wave function (321)
we can read off what f is

f(k,k′) = − 2m

4πh̄2

∫
d3x′ei(k−k′)·x′V (x′). (342)

We see that f to lowest non-trivial order is essentially the Fourier transform
of the potential.

This procedure can of course be continued. At the next order we get

〈x|ψ(2)〉 =
∫
d3x′

∫
d3x′′〈x| 1

E − Ĥ0 + iε
|x′〉V (x′)×

〈x′| 1

E − Ĥ0 + iε
|x′′〉V (x′′)〈x′′|k〉. (343)

Notice that here we can only simplify the propagator between x′ and x since
both x′ and x′′ is in the region where V 6= 0 and thus are of the same order
of magnitude.

Let us evaluate the cross section at lowest order for a concrete potential.
We take the potential to be

V (r) = V0
e−µr

µr
. (344)
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This potential is local and for small r (r � 1
µ
) it looks just like the Coulomb

potential 1
r
. For large r (r � 1

µ
) however, the exponential suppression makes

it effectively zero. Thus the range where the potential is non-zero is for r < 1
µ
.

Now let us calculate the cross-section. We have

f(k,k′) = − 1

4π

2m

h̄2

∫
d3xei(k−k′)·xV (x), (345)

which, since V is a function only of r, we can write as

f(k,k′) = − 1

4π

2m

h̄2

∫ 2π

0
dφ
∫ π

0
dθ sin θ

∫ ∞

0
drr2eiqr cos θV (r) =

−2mV0

µh̄2q

∫ ∞

0
dre−µr sin qr, (346)

where we have introduced the vector q = k − k′. The final integral over r
can be performed by using that we know that eiqr = cos qr+ i sin qr and thus
rewriting the integral as

f(k,k′) = −2mV0

µh̄2q
=
[∫ ∞

0
dre−µreiqr

]
= −2mV0

µh̄2q
=
[

1

µ− iq

]
=

− 2mV0

µh̄2 (µ2 + q2)
. (347)

To calculate q2 we use that we know that |k| = |k′| = k and assume that the
scattered angle is θ, that is that the angle between k and k′ is θ. This gives
us

q2 = |k− k′|2 = k2 + k′2 − 2kk′ cos θ = 2k2 − 2k2 cos θ = 4k2 sin2 θ

2
. (348)

Everything together now gives us the differential cross section

dσ

dΩ
= |f |2 =

(
2mV0

µh̄2

1

µ2 + 4k2 sin2 θ
2

)2

(349)

We can compare this with something we know (scattering on the Coulomb
potential or Rutherford scattering) by taking the limit µ → 0 keeping V0

µ

fixed. Then our potential reduces to the Coulomb potential and the cross
section goes to (

2mV0

µh̄2

)2
1

16k4 sin4 θ
2

, (350)
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which indeed is the Rutherford cross section.
Since this way of solving the scattering problem is an approximation, it

is important to ask ourselves how far we can trust it. Our basic assumption
was all the time that the successive wave functions |ψ(n)〉 become smaller and
smaller for each successive n. In particular this has to hold in the region where
the potential is non zero since what we do in the first Born approximation
is really to replace |ψ〉 in (315) with |φ〉. Therefore, to check this we should
evaluate the wave functions at x = 0 for a “typical” potential and see for
which data (range of the potential, energy of the incoming particles etc) the
approximation breaks down (i.e. where the perturbation to the wave function
|ψ(1)〉 becomes of the same order as the whole wave function. To this end
let us assume that we have a potential which is non-zero for r < a for some
number a and in the non-zero region it has average value V0. We have

∣∣∣〈x|ψ(0)〉
∣∣∣ =

∣∣∣∣∣ eik·x

(2π)
3
2

∣∣∣∣∣ = 1

(2π)
3
2∣∣∣〈x = 0|ψ(1)〉

∣∣∣ =

∣∣∣∣∣ 2mV0

(2π)
3
2 4πh̄2

∫ a

0
d3x′

eik|x|′

|x|′
eik·x′

∣∣∣∣∣ . (351)

We see that for the approximation to be good, we need that
∣∣∣〈x = 0|ψ(0)〉

∣∣∣�∣∣∣〈x = 0|ψ(1)〉
∣∣∣ or, in other words, that

∣∣∣∣∣2mV0

4πh̄2

∫ a

0
d3x′

eik|x|′

|x|′
eik·x′

∣∣∣∣∣� 1 (352)

First let us assume that the energy of the incoming particles (given by k) is
small compared to the range of the potential (given by a). That is, assume
that ka � 1. Since |x′| in the integral is always less than a we can put
eik|x|′ ≈ eik·x′ ≈ 1. Then the integral is easily done∣∣∣∣∣2mV0

4πh̄2

∫ a

0
d3x′

eik|x|′

|x|′
eik·x′

∣∣∣∣∣ ≈
∣∣∣∣2mV0

4πh̄2

∫ 2π

0
dφ
∫ π

0
dθ sin θ

∫ a

0
dr′r′2

1

r′

∣∣∣∣ =∣∣∣∣∣mV0a
2

h̄2

∣∣∣∣∣ . (353)

The requirement is therefore |V0| � h̄2

ma2 which means that the potential
cannot be too strong (i.e. V0 big) or of too long range (i.e. a big) if the Born
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approximation should be good at low energy. At high energy (ka � 1) on
the other hand, we have the requirement

1 �
∣∣∣∣∣2mV0

4πh̄

∫ 2π

0
dφ
∫ π

0
dθ sin θ

∫ a

0
dr′r′2

eikr′ cos θeikr′

r′

∣∣∣∣∣ . (354)

Doing the integral over the angles, we get∣∣∣∣mV0

ikh̄2

∫ a

0
dr′

(
e2ikr′ − 1

)∣∣∣∣ , (355)

and then the integral over r′ gives us∣∣∣∣ mV0

2k2h̄2

(
2ika− e2ika + 1

)∣∣∣∣ ≈ ∣∣∣∣V0ma

kh̄2

∣∣∣∣ , (356)

where we have used that ka� 1. This leads to the requirement

|V0| �
h̄2

ma2
ka. (357)

Notice that this is the same requirement as in the low energy case, but mul-
tiplied with the (large) factor ka. Thus we see that the Born approximation
becomes better and better when we increase the energy. This can be intu-
itively understood since for high energy (which is equivalent to high velocity)
the particles go through the potential region very fast and there is no time
to interact many times with the potential. Thus the first order Born ap-
proximation (which is, as you remember, given by restricting the number of
interactions to one) should be good.

3.4 Partial waves

In view of the above restrictions of the Born approximation, it is important to
find other, non equivalent, approximations in which the scattering problem
can be solved. One such methods starts by the assumption that the potential
is spherically symmetric (but there is no assumption that the potential is
“small” or of finite range as in the Born approximation). That the potential is
spherically symmetric means that it is invariant under rotations, which, as we
know from our discussions on angular momenta means that V̂ commutes with
L̂ and in particular with L̂2 and L̂z. Since Ĥ = p̂2

2m
+V̂ and p̂2 also commutes

with the angular momentum operator we can choose energy eigenstates that
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are simultaneously eigenstates of L̂2 and L̂z. Therefore, let us use these
eigenstates to expand an arbitrary wave function with energy E = h̄2k2

2m
in

the coordinate basis as

ψk(x) =
∑
l,m

Rk,l(r)Y
m
l (θ, φ). (358)

In fact, in our problems, since we can always choose the incoming wave to
be a plane wave moving in the z direction, the fact that the potential is
spherically symmetric tells us that no wave function can depend on φ. The

only Y m
l independent of φ is Y 0

l =
√

2l+1
4π
Pl(cos θ) so the wave function can

actually be written even simpler as

ψk(x) =
∑

l

fk,l(r)Y
0
l (θ, φ) =

∑
l

Rk,l(r)

√
2l + 1

4π
Pl(cos θ). (359)

In fact, any function of only θ can be decomposed in such a way, in particular
f(k,k′) which depends only on θ in the case where the potential is spherically
symmetric is usually expanded in the following way

f(k,k′) = f(θ) =
∞∑
l

(2l + 1)fl(k)Pl(cos θ). (360)

The factor (2l + 1) is purely conventional and could be included in fl for
instance.

3.4.1 The resolution of a plane wave

Also the incoming wave function ∝ eikz = eikr cos θ is a function of only θ
and can be expanded in this way. There are quick and dirty ways to find
this expansion, but let us do it more carefully. Let us first find the basis
functions we want to use. That is, let us solve the free Schrödinger equation
in spherical coordinates

− h̄2

2m
∇2ψk(x) =

h̄2k2

2m
ψk(x). (361)

Making the ansatz ψk(x) = Rkl(r)Y
m
l (θ, φ) and using that the Laplacian in

spherical coordinates can be written

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂r

)
+

1

sin2 θ

∂2

∂φ2

)

=
1

r2

∂

∂r

(
r2 ∂

∂r

)
− L̂2

h̄2r2
, (362)
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we see that the Schrödinger equation reduces to the radial equation(
− 1

r2

d

dr

(
r2 d

dr
Rkl

)
+
l(l + 1)

r2
Rkl

)
= k2Rkl, (363)

or

d2Rkl

dr2
+

2

r

dRkl

dr
+

(
k2 − l(l + 1)

r2

)
Rkl = 0. (364)

This equation has the solution

R
(1)
kl = (−1)l(kr)l

(
1

kr

d

d(kr)

)l
sin kr

kr
≡ jl(kr), (365)

and the linearly independent solution

R
(2)
kl = (−1)(l+1)(kr)l

(
1

kr

d

d(kr)

)l
cos kr

kr
≡ nl(kr), (366)

which is however singular for r = 0. These functions are known as spherical
Bessel functions. They are related to the ordinary Bessel functions by

jl(x) =
(
π

2x

) 1
2

Jl+ 1
2
(x),

nl(x) = (−1)(l+1)
(
π

2x

) 1
2

J−l− 1
2
(x). (367)

Their asymptotic properties are given by

lim
x→0

jl(x) =
xl

(2l + 1)!!
,

lim
x→0

nl(x) = −(2l − 1)!!

xl+1
,

(368)

and

lim
x→∞

jl(x) =
1

x
cos

[
x− π(l + 1)

2

]
,

lim
x→∞

nl(x) =
1

x
sin

[
x− π(l + 1)

2

]
. (369)
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Thus we have found that any solution with energy E = h̄2k2

2m
of the free

Schrödinger equation can be written as

ψk(x) =
∑
lm

(
c
(1)
lmjl(kr) + c

(2)
lmnl(kr)

)
Y m

l (θ, φ). (370)

In the cases we are interested in there is no dependence on φ so m = 0 and
since nl is singular at the origin we can set c(2) = 0 for solutions which are
non singular at the origin. In particular, turning back to our plane wave, we
can write

eikz = eikr cos θ =
∑

l

cljl(kr)Pl(cos θ), (371)

for some constants cl. The coefficients can be determined by comparing terms
on both sides of the equation. To make it simpler, let us compare for r → 0.
On the left hand side we have a power series in (kr cos θ) which the coefficient

of the l-th term being il

l!
. On the right hand side jl goes like (kr)l

(2l+1)!!
and from

Pl we need the cosl θ term which can be found from the formula

Pl(cos θ) =
1

2ll!

dl

d(cos θ)l
(cos2 θ − 1)l, (372)

to have coefficient (2l)!
2ll!l!

which tells us that on the right hand side the coefficient

multiplying the (kr cos θ)l term is cl
(2l)!

(2l+1)!!2ll!l!
= cl

(2l)!
(2l+1)!l!

. Equating this we
get

cl = il(2l + 1), (373)

which gives us the final expression

eikz =
∑

l

(2l + 1)iljl(kr)Pl(cos θ). (374)

It is interesting to see how this expression looks like for large r. Using the
asymptotic expressions for the spherical Bessel functions we can write

eikz ≈
∑

l

(2l + 1)il

kr
cos

[
kr − π(l + 1)

2

]
Pl(cos θ) =

∑
l

(2l + 1)il

2kr

(
eikr−i

π(l+1)
2 + e−ikr+i

π(l+1)
2

)
Pl(cos θ) = (375)
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∑
l

(2l + 1)il

2kr

(
(−i)l+1eikr + il+1e−ikr

)
Pl(cos θ) =

∑
l

(2l + 1)

2ikr

(
eikr − e−i(kr−πl)

)
Pl(cos θ).

We thus see the interesting fact that a plane wave can be written as a linear
combination of one incoming and one outgoing spherical wave.

3.4.2 General formalism

Having everything written in spherical coordinates we can now proceed and
solve the scattering problem. The general solution of the wave function (321)
can now be written, using (374) to write the incoming part and (360) to write
the outgoing part, as

〈x|ψ〉 =
1

(2π)
3
2

∑
l

(2l + 1)Pl(cos θ)

(
iljl(kr) +

eikr

r
fl(k)

)
. (376)

At large values of r (we observe the wave function far away from the scatterer
remember), using (375) this simplifies to

〈x|ψ〉 =
1

(2π)
3
2

∑
l

(2l + 1)

2ik
Pl(cos θ)

(
−e

−i(kr−lπ)

r
+
eikr

r
(1 + 2ikfl(k))

)
.(377)

We see that the full wave function is, in the same way as the plane wave
in the previous section, just a linear combination of an incoming and an
outgoing spherical wave. The only thing which changed as compared to the
plan wave (375) is that the coefficient of the outgoing wave changed from 1
to Sl = 1 + 2ikfl(k).

One way to get some hold on what fl(k) can be without doing any cal-
culation is to observe the simple principle that “what goes in must come
out” (in the case of elastic scattering of course). This means that the flow
of probability into the region must be the same as the flow out. Now we can
use that in (332) we found an expression for the radial probability current

for an arbitrary wave function. That is, for a general spherical wave g e±ikr

r

(g cannot depend on r) the probability current is

jr =
h̄k

mr2
|g|2 , (378)
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or, the flow through the area element r2dΩ is h̄k
m
|g|2 dΩ. From this we find

that the requirement that the probability is conserved leads in our case to
the requirement that the coefficient in front of the outgoing wave has the
same absolute value as the coefficient in front of the incoming wave. Because
of angular momentum conservation, this has to be true for each l separately.
This means that for each l we have

1 = |1 + 2ikfl(k)| . (379)

This condition is easily solved by saying that Sl is a pure phase, i.e. that

Sl = 1 + 2ikfl(k) = e2iδl . (380)

Inserting this back in the wave function we have

〈x|ψ〉 =
1

(2π)
3
2

∑
l

(2l + 1)

2ik
Pl(cos θ)

(
−e

−i(kr−lπ)

r
+
eikr+2iδl

r

)
. (381)

We see that the only thing that the potential does is to change the phase
of the outgoing wave with δl being the phase shift. To be complete we also
express fl in terms of the phase shift. We have

fl =
Sl − 1

2ik
=
e2iδl − 1

2ik
=
eiδl sin δl

k
=

1

k cot δl − ik
. (382)

As a consequence of this we can relate the imaginary part of f(θ = 0)
to the total cross section. It is known as the optical theorem and it follows
from just the conservation of probability (which is the only thing we have
used) so it holds quite generally. Namely, since the differential cross section
is dσ

dΩ
= |f |2 we may calculate the total cross section as

σ =
∫
dΩ

dσ

dΩ
=
∫
dΩ

∑
ll′

(2l + 1)(2l′ + 1)f ?
l′flPl′(cos θ)Pl(cos θ). (383)

Then we may use the orthogonality properties of the Legendre polynomials∫
dΩPl′(cos θ)Pl(cos θ) = δl,l′

4π

2l + 1
, (384)

to find

σ = 4π
∑

l

(2l + 1) |fl|2 . (385)
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On the other hand we can calculate the imaginary part of f evaluated at
θ = 0 (forward scattering). This we calculate to be

=f(θ = 0) =
∑

l

(2l + 1)Pl(1)=fl(k) =
∑

l

(2l + 1)=fl(k). (386)

But now comes the trick. We have used the conservation of probability to
show that we may write fl as

fl =
eiδl sin δl

k
, (387)

and from this we derive

|fl|2 =
sin2 δl
k2

,

=fl =
sin2 δl
k

= k |fl|2 . (388)

Thus we find that

=f(θ = 0) =
kσ

4π
, (389)

which is known as the optical theorem.
It is now clear how to find the cross section using the method of partial

waves. We need to find the wave function far away from the scattering area.
We have shown that it always looks like in (381) so writing it in this form
we can just read off the phase shift δl and then we have

f(θ) =
∑

l

(2l + 1)
eiδl sin δl

k
Pl(cos θ), (390)

which gives us the cross section through dσ
dΩ

= |f |2. To find the wave function
we have to solve the (radial) Schrödinger equation which can be done in many
ways. If the potential is simple enough it might be possible to do it exactly. If
the potential has finite range so that for large r it is equal to zero, we can solve
the radial Schrödinger equation (even numerically, if necessary) in the region
where the potential is non-zero and in the region where it is zero separately.
In the region where it is zero we have in fact already solved it since in that
region the Schrödinger equation is the equation for a free particle which has
as its most general solution (370). To get the full solution we need the inner
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solution with the outer solution (wave functions and their derivatives should
be equal) at some point r = R and we are done. In formulas we have the
outer wave function (we conventionally redefine the constants as compared
to (370))

ψk(x) =
∑

l

(2l + 1)il
(
c
(1)
l jl(kr) + c

(2)
l nl(kr)

)
Pl(cos θ), (391)

where we find c
(1)
l and c

(2)
l by matching to the inner solution. The asymptotic

expressions for the spherical Bessel functions give us an expression for the
asymptotic form of the wave function

ψk(x) =
1

(2π)
3
2

∑
l

(2l + 1)(c
(1)
l + ic

(2)
l )

2ikr
Pl(cos θ)−e−i(kr−lπ)

r
+
c
(1)
l − ic

(2)
l

c
(1)
l + ic

(2)
l

eikr

r

 . (392)

Comparing this to (377) we find that

c
(1)
l + ic

(2)
l = 1,

c
(1)
l − ic

(2)
l

c
(1)
l + ic

(2)
l

= e2iδl , (393)

or

c
(1)
l =

eiδl cos δl
2

,

c
(2)
l = −e

iδl sin δl
2

(394)

so finding the coefficients c
(1)
l and c

(2)
l immediately gives us the cross section.

3.4.3 Applications

As an illustration of this let us find the scattering on a “hard sphere” potential

V (r) =

{
∞ for r < R,
0 for r > R.

(395)
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Solving for the wave function in the inner region r < R is easy. Because the
potential is infinite there the wave function has to be zero. Matching the
outer wave function to the inner one tells us that we have to find c

(1)
l and

c
(2)
l such that

c
(1)
l jl(kR) + c

(2)
l nl(kR) = 0, (396)

and using (394) we find

tan δl = −c
(2)
l

c
(1)
l

=
jl(kR)

nl(kR)
. (397)

We can now find the phase shift (and thus the cross section) for each l
separately but to keep it simple, let us do so in the low energy (kR � 1)
limit only. Then we have

tan δl = lim
kR→0

jl(kR)

nl(kR)
=

(kR)l

(2l+1)!!

− (2l−1)!!
(kR)l+1

= − (kR)2l+1

(2l + 1)!!(2l − 1)!!
. (398)

Since kR is small we see that δ0 ≈ −kR and all higher δl rapidly become
smaller for larger l. Therefore to a good approximation f(θ) is given by the
l = 0 term as

f(θ) ≈ f0P0(θ) =
eiδ0 sin δ0

k
≈ −R, (399)

giving us the differential cross section

dσ

dΩ
= |f |2 = R2. (400)

Notice that this gives a total cross section (by integrating over dΩ) of 4πR2

which is four times as large as the geometrical cross section that one would
expect classically. Notice also that the differential cross section is indepen-
dent of any angles. This is the case for all scattering where only l = 0
contributes since P0(cos θ) = 1.

Another interesting potential that we may consider is the square well
potential

V (r) =

{
V0 for r < R,
0 for r > R.

, (401)
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where V0 is some positive or negative constant. If V0 is positive, the potential
is repulsive and if V0 is negative the potential is attractive. For attractive
enough potential (V0 negative enough) the potential develops bound states.
Let us study only the l = 0 case which should be the relevant case at low
energy. The outer wave function (valid in the r > R region) may in this case
be written

ψk(x) =
(
c
(1)
0 j0(kr) + c

(2)
0 n0(kr)

)
. (402)

Inserting the expressions for the Bessel functions and using (394) we can
rewrite this as

ψk(x) =
eiδ0 sin (kr + δ0)

kr
. (403)

Remember that this is the solution of the radial Schrödinger equation for the
free particle (364) in the l = 0 case. In the presence of a potential, the radial
Schrödinger equation becomes

d2Rkl

dr2
+

2

r

dRkl

dr
+

(
2mE

h̄2 − 2mV (r)

h̄2 − l(l + 1)

r2

)
Rkl = 0, (404)

which for our potential and in the l = 0 case leads to the equation that needs
to be solved in the inner region

d2Rk0

dr2
+

2

r

dRk0

dr
+

2m(E − V0)

h̄2 Rk0 = 0. (405)

which can be rewritten even more nicely as

d2

dr2
(rRk0) +

2m(E − V0)

h̄2 (rRk0) = 0. (406)

We see immediately that the solution which is regular at r = 0 can in the
V0 > E case (which implies V0 > 0 since E > 0) be written as

rRk0 = a sinhκr κ2 =
2m(V0 − E)

h̄2 , (407)

and in the E > V0 case we have

rRk0 = b sin k′r k′2 =
2m(E − V0)

h̄2 , (408)
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for some constants a and b. Let us concentrate on the attractive case E >
V0 = − |V0| in the following. Then as we saw we have the inner wave function
b sin k′r

r
and the outer wave function eiδ0 sin(kr+δ0)

kr
and they need to be matched

at r = R. That is, their values need to be equal there

b sin k′R

R
=
eiδ0 sin (kR + δ0)

kR
, (409)

and their first derivatives also need to be equal there

b

(
k′ cos k′R

R
− sin k′R

R2

)
= eiδ0

(
cos(kR + δ0)

R
− sin(kR + δ0)

kR2

)
. (410)

Dividing these two equation with each other b and eiδ0 drop out and we get

k′R cot k′R− 1 = kR cot(kR + δ0)− 1, (411)

or

tan(kR + δ0)

kR
=

tan k′R

k′R
. (412)

This is a rather complicated equation which we need to solve for δ0. We can
simplify it a bit by using the addition formula for the tangent

tan(A+B) =
tanA+ tanB

1− tanA tanB
, (413)

to write

tan δ0 =
kR tan k′R− k′R tan kR

k′R + kR tan kR tan k′R
. (414)

This allows us to analyze the scattering behavior qualitatively as a function
of V0. Starting at V0 = 0 which means no potential at all we have k = k′ and
thus tan δ0 = 0 which means that δ0 = 0 and there is no scattering as should
be expected. Increasing |V0| (that is decreasing V0 or making the potential
more attractive) one will get k′ > k and tan δ0 6= 0 which gives a non-zero
value for δ0 and thus for the cross section. The cross section

dσ

dΩ
= |f(θ)|2 ≈ f0(k)P0(cos θ) =

sin2 δ0
k2

, (415)
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will increase and reach its maximum at δ0 = π
2
. This happens when tan δ0 =

∞, which means that k′R + kR tan kR tan k′R = 0. Increasing |V0| even
more we again will come to a point where kR tan k′R− k′R tan kR = 0 (this
means that δ0 = π and k′R ≈ 3π

2
which paradoxically leads to the fact that

cross section is zero even thought the potential is far from being zero! This is
known as the Ramsauer-Townsend effect and can be experimentally observed
in scattering of electrons on rare gas atoms.
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