More-particle Correlations
in Fermion Beams

Dissertation

Tomas Tyc

Faculty of Science, Masaryk University

Brno 1999



Vicecasticové korelace
ve fermionovych svazcich

Disertaéni prace

Tomas Tyc

Prirodovédecka fakulta Masarykovy univerzity
Brno 1999



Contents

1 Introduction

2 Experiment
2.1 Basic components of an experiment with free electrons . . . . ... .. ..
2.2 Electron coincidence experiment . . . . . . . .. ... ... ... ..

3 Correlation functions
3.1 Correlation functions as mean values of field operator products . . . . . . .
3.2 Detection correlation function . . . . . . . . . ...

4 Field operators
4.1 Heisenberg representation . . . . . . . . .. ... L.
4.2 Relations between creation and annihilation operators of different states . .

5 Electron state
5.1 Chaotic state . . . . . . . . . e
5.2 Generalized chaotic state . . . . . . . .. ... Lo
5.3 Pure Fock state of n electrons in modes py,...,pp . . . . . . . .. ... ..
5.4 Wave-packet state . . . . . . ..

6 Calculation of correlation functions

6.1 Assumptions for the calculation . . . . . . ... ... ... ... ...,

6.2 Correlation function for the chaotic state . . . . . . . . . ... ... .. ..
6.2.1 An alternative form of the chaotic state . . . . . . . . .. ... ...
6.2.2 Calculation of the k-electron correlation function for the chaotic state

6.3 Correlation function for the generalized chaotic state . . . . . .. . .. ..

6.4 Correlation function for the n-electron pure state . . . . . .. ... .. ..

Appendix A . . . L

Appendix B . . . . . .

7 Correlation functions for partially polarized beams
7.1 Independence of two spin components . . . . . . . .. ... ... ... ...
7.2 Two-electron correlation function . . . . . . .. .. ... ... ... .. ..
7.3 The k-electron correlation function . . . . ... ... ... .. ... ....

13
14
15

18
18
19

21
22
22
23
23

24
24
25
25
27
30
31
33
35



Appendix . . . .. 41

8 Algebraic structure of correlation functions 42

8.1 Proof of inequality (8.2) . . . . ... ... ... ... 44

8.2 Fermionic nature of electron correlations . . . . . . . .. ... ... .. .. 45

8.3 Correlation function corresponding to new creation and annihilation operators 47

8.4 Modes of the field at the detectors . . . . . . . . . . . . ... ... ... .. 49

9 Correlation function for field-emission electrons 50

9.1 Modes of the field-emission electron field . . . . . . ... ... ... ... .. 51

9.2 Angular coherence function . . . . . ... .. Lo 54

9.2.1 Gaussian distribution of the source intensity . . . . . . ... .. .. 55

9.3 Temporal and longitudinal coherence function . . . . . . ... .. ... .. 26

9.4 Antibunching — the basic property of two-electron correlations . . . . . . o7

9.4.1 Analogy with a wave packet . . . . .. . ... ... ... ... ... a7

9.4.2 Gaussian momentum distribution . . . . . . ... .00 59

9.5 Estimating the spatial and temporal extent of two-electron correlations . . 60
9.6 Time integral of the complex degree of coherence as a measure of the two-

electron correlation . . . . . . . . . . .. 62

9.7 Feasibility of observing electron antibunching . . . . . . ... .. ... .. 64

10 Correlation function in real experiment 65

10.1 Correlation function in an electron biprism interferometer . . . . . . . . . . 66

10.1.1 Antibunching intensity in interferometer . . . . . . . . . . ... .. 68

10.1.2 Average antibunching intensity . . . . . ... ... ... ... ... 72

11 Can measurement at one detector influence detection at another one? 75

11.1 Problem . . . . . . . . e 75

11.2 Solution . . . . . . . . e 76

12 Conclusion 79

12,1 Summary . . . . .. e e 79

12.2 Further research . . . . . . . . . . . . 80

Acknowledgment 81

References 82



Chapter 1

Introduction

The aim of this dissertation is to describe some interesting aspects of more-particle cor-
relations in fermion beams that occur due to the indistinguishableness of fermions. A
considerable part of this dissertation is inspired by the methods and results of optical the-
ory of coherence that deals with analogous phenomena in photon beams. For this reason it
is convenient to quote at the beginning the book Optical Coherence and Quantum Optics
by L. Mandel and E. Wolf [1] (Chapter 4, p. 147), where a brief introduction to the optical
theory of coherence is given:

It seems hardly necessary to stress that every electromagnetic field found
in the nature has some fluctuations associated with it. Even though these
fluctuations are, as a rule, much too rapid to be observed directly, one can de-
duce their existence from suitable experiments that provide information about
correlations between the fluctuations at two or more space-time points.

The simplest manifestation of correlations in optical fields are the well-
known interference effects that arise when two light beams that originate from
the same source are superposed. With the ability of modern light detectors and
electronic circuitry of very short resolving time, other types of correlations in
optical fields began to be studied in more recent times. These investigations, as
well as the development of lasers and other novel types of light sources, led to
a systematic classification of optical correlation phenomena and the complete
statistical description of optical fields. The area of optics concerned with such
questions is now generally known as optical coherence theory.

The optical coherence theory is nowadays a very important part of physics and covers
a vast area of all kinds optical phenomena. In comparison to this, the theory of coherence
of free fermion fields suffers a considerable delay. This fact is not difficult to understand
and it has two main reasons.

First, the experimental support in both the cases can be hardly compared, which is
clear already from the fact that we meet optical phenomena in the everyday life, which
cannot be said about fermion beams (an exception is a television screen; however, it hardly
enlarges our direct experience with fermions). For example, we can look at a bulb filament
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through a piece of fabric to see wonderful diffraction effects or observe colours on a water
puddle with an oil drop in it. It is also quite easy to get a coherent light beam — just by
letting the light from a star pass through an interference filter of a narrow bandwidth we
obtain light that is spatially and temporally very coherent. On the other hand, to obtain
a coherent neutron beam one needs a nuclear reactor, and to get a coherent electron beam
an ultra-high vacuum chamber with an extremely sharp field-emission tip is necessary.
Moreover, the coherence of so obtained electron or neutron beams can never reach the
quality of the above mentioned filtered light from a star.

Second, there is one fundamental difference between photon and fermion fields: in
contrast with light, there is no classical wave theory for fermions. Many optical coherence
and correlation phenomena such as interference fringes or the Hanbury-Brown and Twiss
effect can be understood without quantum mechanics, just with the help of the classical
electromagnetic theory. This enabled the development of the optical coherence theory
already long before quantum mechanics appeared and on this base the quantum coherence
theory could then develop rapidly. In contrast to this, there is no classical wave theory
for fermions and it is completely unavoidable to use the quantum theory for describing
coherence and correlation phenomena that occur in fermion beams.

I would like to contribute to reducing the above mentioned contrast by this dissertation.
Because of concreteness, I will concentrate on the electrons, but most of the results to be
obtained hold also for other types of fermions. The main reason for choosing the elec-
trons is the experimental background at the Institute of Applied Physics at the University
of Tiibingen, Germany, where currently an electron coincidence experiment is going on.
Therefore T will also consider free electrons in this dissertation that seem to have attracted
up to now less theoretical and experimental interest than the electrons in condensed matter.

The dissertation is organized as follows: first, in Chapter 2 the basic elements of an elec-
tron correlation experiment are described. In Chapter 3 the electron correlation functions
are defined with the help of which the coherence and correlational properties of the electron
fields will be described. In Chapter 4 some aspects of electron field operators are discussed.
In Chapter 5 the chaotic state of the electron field is introduced which is supposed to de-
scribe the free electrons in the best way, and also some other alternatives of electron states
are given. Then rather a complicated Chapter 6 follows where the correlation functions
are evaluated for the states defined in Chapter 5 without considering the electron spin.
This imperfection is improved in the next Chapter 7, where also the spin is taken into
account. Thanks to a determinant form of the correlation function of the chaotic state,
it is possible in Chapter 8 to apply the methods of linear algebra to show an important
inequality between different correlation functions. In the next Chapter 9 the properties of
two-electron correlation function are discussed in relation to experiment. The influence of
an electron biprism and a Wien filter on the correlation function is discussed in Chapter 10.
In Chapter 11 an interesting aspect of the correlation functions is discussed that can seem
to lead to senseless results. In the last Chapter 12 the dissertation is summarized and
the possible directions of further research are outlined.

I must warn the reader that some parts of the dissertation are quite complicated and
therefore maybe less readable. This holds especially about Chapter 6 that can be skipped
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except for the fundamental results expressed in Eqs. (6.28) and (6.30). Chapter 8 is written
in a formal mathematical way and is rather complicated. However, I do not recommend
the reader to skip it completely because I think that it is even an esthetic experience to
see how the linear algebra beautifully works when applied on the correlation functions.



Chapter 2

Experiment

Even though this dissertation is a theoretical one, I think it is important not to loose
connection with the experiment because it is basically the experiment that enables to verify
if a physical theory is correct or not. Therefore I include this chapter at the beginning
of this dissertation. Moreover, it will be useful to mention different components used in
the experiments with free electrons at this place because I will often speak about them
later. So, I will describe now briefly a general free-electron experimental setup and its most
important parts and then explain the idea of the electron coincidence experiment that is
currently running in Tiibingen.

2.1 Basic components of an experiment with free elec-
trons

The basic components of any free-electron experiment are the electron source and one or
more detectors. Then there can be also additional elements that modify the electron field
according to the aim of the experiment. Such elements are for example an electrostatic
biprism, a Wien filter, an electrostatic quadrupole, a coil etc. T will mention just the ones
that are of particular importance. The scheme of an electron interferometer including
a photograph of a real interferometer used in Tiibingen is shown in Fig. 2.1, a more detailed
description can be found in [2].

Electron source

There are several methods of obtaining free electrons that are mostly based on emission of
electrons from metal. The most important two of them seem to be the thermal emission
and the field emission.

In the case of thermal emission, the electrons get the energy to left their bound state
in metal from thermal excitations. The energy bandwidth of the emitted electrons is a few
electronvolts. A thermal source does not provide a very coherent electron field and is thus
not suitable for electron correlation experiments.
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D)

source double deflection  biprism Wien filter magnifyinF— imaging detector
element quadrupols assembly

Figure 2.1: The electron interferometer used in Tiibingen

A field-emission source is a very sharp tungsten tip with a diameter of about 50 nm
at the top and with a negative potential of 1 to 1000 kV. A very strong electrostatic field
that is built up near the tip “picks” the electrons from the metal. More precisely said,
the region where the potential energy of the electrons is less than in the metal is so near to
the tip that the electrons can tunnel from the metal to vacuum [3]. The energy bandwidth
in this case is a fraction of electronvolt, which makes the field-emission sources the most
coherent electron sources known up to now and therefore very suitable for interferometric
experiments. I will concentrate on them in this dissertation.

I should also mention an europium-sulfide source that is able to emit partially polarized
electrons when cooled to very low temperatures [4]. This source is a subject of extensive
study.

Electron detectors

The temporal technology enables to detect single electrons. This is achieved by using
an image intensifier that produces about a million secondary electrons if an electron hits
it. The image intensifier consists of usually two cascaded microchannel plates placed im-
mediately after one another. The microchannel plate is a honeycomb-like regular structure
of several millions of tiny tubules with a diameter of six micrometers and a length of half
a millimeter. Each such tube works as as a secondary-electron multiplier thanks to a semi-
conducting material that it is from inside covered with. Thus if an electron hits the plate,
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about a thousand electrons leave the plate on the opposite side. If two plates after one
another are used, about a million electrons are obtained that can be detected either by
a fluorescent screen and observed optically, or collected by a detection anode. In the latter
case a small negative electric pulse is obtained that can be further processed.

Electrostatic biprism

The basic principle of all interferometers is that the particles (e.g. photons or electrons) can
come from the source to the detector by at least two different paths and that interference
occurs between the partial beams coming by these paths. In optics, there are many meth-
ods to achieve this that can be divided into two groups: the methods using the so-called
amplitude splitting and the ones using the wave front splitting. The former principle is used
e.g. in Michelson, Fabry-Perot or Jamin interferometers, the latter one in Fresnel biprism
or Fresnel mirrors interferometer and in the Young experiment [5]. The main element in
the experiments that use the amplitude splitting is a beam splitter. Experiments with
amplitude splitting of electrons on crystals have not been very successful and there is no
practically usable beam splitter for free electrons, even if several types of such splitters are
known for a two-dimensional electron gas [6, 7, 8, 9]. On the other hand, the situation with
the wavefront splitting is much better. An element analogous to the Fresnel biprism in
optics has been discovered for electrons in 1954 by G. Mollenstedt, namely, an electrostatic
biprism consisting of a positively charged conducting filament that attracts electrons by
the Coulomb force [10]. This has made interference experiments with electrons possible
such as observing interference fringes [10, 11|, measurements of the longitudinal coher-
ence [12]|, measurement of the energy spectrum by Fourier spectroscopy [13| and also very
practical applications such as electron holography [14].

Wien filter

A Wien filter consists of homogeneous electrostatic and magnetostatic fields whose in-
tensities are perpendicular to each other and to the optical axis of the experiment [12].
The intensities of the electric and magnetic fields are chosen in such a way that the elec-
tric and magnetic forces acting on the electrons cancel each other. Now, if there are two
electron beams passing through the filter at places with different electrostatic potentials,
the beam passing at the higher potential is accelerated with respect to the beam passing
the filter at the lower potential. Therefore the Wien filter has the same effect as if a longi-
tudinal shift between the beams were introduced. However, the mutual phase of the beams
remains unchanged because the phase velocity of the electrons, in contrast to the group
velocity, does not change in the Wien filter. This is a partial analogy to the situation in
optics when a medium with a different index of refraction inserted to the way of one beam.
However, in the latter case there is of course also a phase difference, which is not the case
of electrons in the Wien filter.
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Electrostatic quadrupole

An electrostatic quadrupole is used for spreading the very narrow beam that is emitted by
the field-emission source. Without this it would be very difficult to observe interference
fringes with the microchannel plate image intensifier and impossible to illuminate detectors
with the size of a few millimeters coherently.

2.2 Electron coincidence experiment

The basic setup of an electron coincidence experiment that is designed to measure two-
electron correlations is simple: there is basically an electron source, two detectors that are
able to detect single electrons, and an electronic apparatus for processing the signals from
the two detectors. The measurement principle can be imagined in the following naive way:
If an electron comes to the first detector (or “start detector”), a very fast “stop-watch”
is started. This watch then runs and is stopped as soon as another electron comes to
the second detector (or “stop detector”). The time interval 7 that the stop-watch has
measured is then stored, the watch is reset and the whole procedure is repeated. In this
way, the statistic of the times intervals between electron arrivals to the first and second
detectors is obtained.

In practice, the above described idea is realized as follows (see Fig. 2.2): The secondary

CFT delay box
/ starting pulse
detectors FC TAE* computer
\ stopping pulse
CFT delay box

Figure 2.2: Scheme of the coincidence measurement setup

electrons from the microchannel plate are collected by two specially designed detectors
and the resulting weak negative pulses travel by two coaxial cables to very fast microwave
amplifiers. The amplified signals are then fed to two constant fraction triggers (CFT) that
change each pulse into a well-defined right-angle pulse with a minimal raising time. The fast
coincidence circuit (FC) selects only the pulse pairs that are separated by less than 10 ns
because the ones with a larger separation are of no use for the experiment. The pulses can
be then delayed to compensate the differences in the lengths of the coaxial cables and are
sent to the hearth of the experiment, the time-to-amplitude converter (TAC). The TAC
produces an output signal whose amplitude is proportional to the time difference 7 between
the starting and stopping pulses. A multi-channel analyzer built in a computer, which is
a kind of an A-D converter, then measures the amplitude of the signal from the TAC
and gives it over to a computer program. After many such measurements are performed,
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the statistics of the time differences 7 is obtained. The time resolution of the coincidence
electronics alone is about 107! s and of the entire experimental setup 10710 s.

The probability distribution of the time differences 7 between the starting and stopping
pulses that is measured in this experiment is closely related to the joint probability of
detecting an electron at the first detector and detecting another electron at the second
detector 7 seconds later. We will call this probability the two-electron correlation function
and, as we will see in the next chapter, it is a member of a large family of different
correlation functions. The following chapters are devoted to evaluating such functions for
field-emission electrons and investigating their properties.



Chapter 3

Correlation functions

Every electron field can be completely described by its density operator. However, the in-
formation contained in this operator is mostly too complex to be investigated directly.
Usually we are interested only in some particular properties of the electron field and there-
fore introduce various physical quantities that describe these properties. Some of these
quantities describe the coherence properties of the electron field and namely these are
the ones in that we will be interested in this dissertation. As the physical laws by which
the electrons are directed have a quantum-mechanical nature, all such quantities have only
a statistical character. Of course it is reasonable to define these quantities in such a way
that they can be measured experimentally, which enables a verification of the theory by
the experiment. As all measurements with free-electron fields are based on a detection of
an electron, it is clear that the quantities we are interested in will be closely connected
with detection probabilities.

The most simple example of such a quantity is the probability density P(r) of finding
an electron at some particular point 7. This probability density can express the coherence
in some situations — for example a periodical varying of P(r) with the position r (i.e.
interference fringes) in an interferometer reflects the fact that the two partial beams are
coherent because an interference between them occurs. However, the probability density
P(r) cannot describe electron correlations because it deals with a one-electron process
only (the detection of an electron). If we want to investigate correlational properties of
an electron field, it is necessary to introduce quantities that involve more-electron detection
processes. An example is the probability distribution of the number of electrons that
arrive to a detector within a time interval 7" or the joint probability of registering electrons
at different detectors and different moments of time. From the practical point of view,
the latter quantity has a simpler structure than the former one and I will concentrate
on it in this dissertation. The quantities based on the probabilities of multiple electron
detections are called correlation functions.

13
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3.1 Correlation functions as mean values of field op-
erator products

Correlation function is a term familiar in all scientific areas where some statistical phenom-
ena occur. Generally said, it is the mean value of a product of some fluctuating variables.
In classical optics the correlation function expresses the statistical average of the prod-
uct the complex analytic signals associated with some field variable (e.g. the intensity of
the electric field) at different space-time points. In quantum optics, the operators corre-
sponding to the complex analytic signal are the photon creation and annihilation operators.
It is therefore natural to define the quantum-optical correlation function as the mean value
of the product of the corresponding operators. As the photon operators do not mutually
commute, however, different correlation functions can be defined using one set of the op-
erators. There is a class of correlation functions with a particular importance, namely,
the functions in which there is the same number of creation and annihilation operators
and all the creation operators stand on the left-hand side from the annihilation operators
(the so-called normal ordering). It can be shown that such correlation functions corre-
spond to the probability of a multiple photon detection and that the normal ordering of
the operators is closely connected with the fact that photons are absorbed at the detection
process. The concept of electron correlation functions is completely analogous to the one of
photons. As the electron detection processes are also based on an absorption of electrons,
the correlation functions that come in question in this dissertation are the normally-ordered
ones.

The normally-ordered operator of electron density at the point r at the time ¢ has
the form

a(r,t) = Pt (r, ) (r, 1), (3.1)

where ¢(r;, t;) and ¢t (r;, ;) are the field operators annihilating and creating an electron
at the space-time point (r;,t;), respectively’. Similarly, the normally-ordered operator of
the probability density that an electron will be found at the point r; at time ¢; and another
electron will be found at the point ro at time ¢, is

ﬁ@)(’f‘l;th”‘mh) = W(Tlatl)iﬁt(ﬁat2)1ﬁ(7°2,t2)¢(7‘1;751)- (3.2)

Note the meaning of the normal ordering: if there is just one electron in the field, no
two electrons can be found at the points (rq,t;) and (rs,t3). Therefore the operator
7 (ry,t,79,1) must give the zero mean value, which is really true thanks to its normal
ordering. If the measurement were not destructive, this would not be necessary: we could
register an electron at the point r; at the time ¢; and then, at the time 5, register the same
electron at the point r5. The operator corresponding to such a non-destructive detection
would be therefore no more normally ordered. This shows a narrow relation between the
operator ordering and the detection mechanism.

Lif we say that some event (e.g. creation of an electron) happens at the space-time point (r,t), we mean
that it happens at the point 7 at the time ¢
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In a similar way, the operator corresponding to the probability density of finding k
electrons at k points 71, 7o, ..., 7, at times t1,ts,...,t; can be written as follows:

ﬁ(k)(rlathTQ;tQ; s 7rk7tk) = Q&T(Tlatl) T w (lrkatk)z&(rk;tk) o "L;(lrlatl)-

(3.3)
The k-electron correlation function? that expresses the probability density of finding k elec-
trons at points r{, 7o, ...,7; and times tq, s, ..., t; is defined as the quantum-mechanical
average of the operator fz(k)(rl, by ooy Try Tg):

G(k)(lrlatla SR ’rkatk) = <7Al(k)(’l”1,t1, SR ’rkatk)>
= <77;T(r1’ tl) o '&T(rka tk)lg(rk’ tk) o ',’[}(rla t1)> : (34)

We will often use a shortened notation G§’;)k instead of G®)(ry, t,, 7y, ty, ..., s, ty), with
each number ¢ in the subscript standing for one space-time point (r;,¢;), and sometimes
we will write simply G if it is clear to what points G*) corresponds. Similarly, we will
denote the field operators ¢ (r;, t;) and ¢f(r;, t;) simply as ¢ and ¢, respectively. If j is
the density operator of the electron field, in this shortened notation we can write

G(llz)k = <7ﬂ e 7]’]177/;19 e 1/;1> TI"{PAZE w;&bk e ‘lbl} (3-5)

3.2 Detection correlation function

An important remark has to be made at this place: the probability density g§’§)k of detect-
ing k electrons at points r{, ro, ..., 7, and times ¢y, %o, ..., t; is not in general proportional
to the k-electron correlation function defined above. In fact, the detection probability
increases with the increasing velocity of electrons, even if the electron density remains con-
stant®. This suggests that the detection probability is connected with particle fluxes rather
than densities. However, it is not completely clear how this probability exactly looks like
and how the “detection correlation function” should be defined. Some authors (e.g. Sil-
verman and Saito [15, 16]) define it with the help of a kind of flux operators introduced
by Goldberger et al. [17]|, which seems to be a good approximation. To find out the exact
expression for the more-electron detection probability, it would be necessary to investigate

2In literature there is not a unity in what is meant by the “correlation function of the kth order”.
In quantum optics the order of the correlation function is defined by the number of field operators in
the product that is averaged. In the electron theory, on the other hand, by a correlation function of the
kth order is mostly understood the function containing 2k field operators corresponding to the detection
of k electrons (one operator pair for each electron). Therefore, to avoid misunderstanding, we will mostly
speak about the k-electron correlation function in this work, which, in the language of quantum optics,
has the order 2k.

3This can be understood with the help of a simple analogy from the everyday life: if it rains, the prob-
ability that a drop hits our hand (a “detector”) during some particular time is proportional not only to
the concentration of the drops in the air but also to the velocity with which they fall.
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the interaction of the electron field with the detector on the microscopic level. This inter-
action is more complicated than e.g. the interaction of light with a detector in the case of
a photodetection, one of the reasons being the indistinguishableness of the arriving elec-
tron with the electrons in the detector. The question of a microscopic theory of electron
detection should deserve a proper analysis similar to the one given e.g. by Mandel and Wolf
([1], Chapter 14) for the photoelectric detection of light. We will not make this analysis
here but only suggest the form of the more-electron detection probability heuristically.

It can be expected that the one-electron detection probability in a detector with an ori-
ented cross-section S and quantum efficiency « is proportional to 04(5’3), where 3 is the flux
operator at the point (7, %),

ot p o p
The gradient of a field operator is defined as

O (w,y, 2, t) O(z,y,2,t) M(x,y,z1) (3.7)
oz ’ oy ’ 0z '

Vz@(r,t) = Vz@(m,y,z,t) = (

with
azﬁ(a:,y,z,t) . Iﬁ(:r—l—h,y,z,t) —@(x,y,Z,t)
——= 2 = lim
ox h—0 h

etc. (3.8)

The time probability density of registering an electron at each of the k detectors located
at the points rq,...,r, at times ¢, ..., %y will be then

k
Pl(g)k = <3 I «iSig; 1> : (3.9)
=1

the index i standing for each detector. Here : : denotes the normally-ordered product* and
V; is the gradient with respect to r;. The detection correlation function then looks like

k koo
o= (i) = (T [vdhi—dlva] ). @)
i=1 i=1

and has a structure of a k-tensor (linear k-form) operating on the k vector variables
a18;, ..., Sg. It means that after evaluating Q%)k on the k arguments a1 S;, ..., apSy
we get the k-electron detection probability density Pf;“)k The probability of detecting k
electrons at the points 71, 7o, ..., 7, during the time intervals (¢, ¢;+ dty), . .., (tg, tp+ dtg)
will be then equal to Pl(g)k dty -+ - diy.

In evaluating the expression (3.9) even for £ = 2 and simple electron states I have met
big difficulties and to obtain reasonable results it has been necessary to make certain ap-
proximations, especially about the quasi-monochromaticity of the electrons. Fortunately,

“for example, : ﬂgfzggf}; i= —gﬂzﬁgzﬁg; the minus sign appears due to antisymmetrical properties of
fermion operators
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the k-electron detection probability density Pf;“)k is proportional to the correlation func-
tion G(lg)k with a good accuracy for quasi-monochromatic electrons. As we always deal
with such electrons in practical situations that are to be described®, we will concentrate
on the correlation functions according to Eq. (3.4) rather than the detection correlation
functions such as Eq. (3.10).

The probability density of detecting k electrons at the points r,...,7r; and times
ti,...,tx, can be obtained from the correlation function Glg)mk by multiplication with
the factor Hle vayS;, where v is the average velocity of the electrons.

SWe say that that electrons are quasi-monochromatic if their energy bandwidth AF is much less that
their mean kinetic energy E. For typical field-emission electrons this assumption is fully satisfied because
AFE ~ 0.3 eV, while E reaches the value of several keV.



Chapter 4

Field operators

As the field operators play the key role in the calculation of correlation functions, it will
be useful to remind some of their basic properties in relation to the time evolution and the
transformational properties between different creation and annihilation operators.

4.1 Heisenberg representation

We will use the Heisenberg representation of operators and states throughout this disserta-
tion because it is more suitable for investigating correlations than the Schrédinger represen-
tation. Indeed, dealing with probabilities of events occurring at different moments of time
(e.g. a multiple electron detection), it is almost impossible to use the Schrédinger represen-
tation in which there is only one time parameter expressing the evolution of the electron
state.

As known, in the Heisenberg representation the states remain unchanged in time and
the time dependence of physical variables is reflected by the change of the corresponding
operators. Therefore the operators of physical variables are time-dependent, which is often
expressed explicitly by writing the time argument ¢. The time evolution of any operator
O in the Heisenberg representation is given by the equation

oW =Ut, ) O) Ut 1) (4.1)

where U(t) denotes the evolution operator of the system. This evolution operator is deter-
mined by the differential equation

in % Ut',t)= HU(t, 1) (4.2)
with the initial condition that U(t,t) is the unity operator. If the Hamiltonian H of the
system is not time-dependent, then it holds U(#,t) = U(t' — t) = exp {—% (1 — t)]

Let 7(t) denote the electron coordinate operator at the time ¢ and |r,¢) the eigenstate
of this operator. So, |r,t) is the coordinate eigenstate at the moment ¢. However, at
a different moment ¢’ # t it is no more a coordinate eigenstate because the coordinate

18
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operator #(¢') has changed with respect to #(¢) by the Heisenberg operator evolution.
Thus the time argument ¢ of the state |r,¢) reflects the fact that |r,¢) is the coordinate
eigenstate at the moment ¢ only and does not express any time evolution of the state |r,t).
So, it holds that

r(t)|r,t) = rlr,t), ?(t)|r, t") = rlr,t'). (4.3)

At the same time, the Heisenberg time evolution of the coordinate operator 7 is according
to Eq. (4.1) given by

() =UN, ) r(t) U, 1). (4.4)

Substituting Eq. (4.4) into Eq. (4.3b) and multiplying both sides with the operator Ut t) =
[UT(#',t)]~" from the left, we get

FOUE e ) =r U t)|r, 1), (4.5)
from which, together with Eq. (4.3a) it follows
ety = U, 1) |r, 1), (4.6)

This equation shows the relation between the states |r,t) at different times.

The electron field operators are simply the operators that annihilate and create an elec-
tron at the state |r,¢) (or, in other words, annihilate and create an electron at the space-
time point (r,t)):

(e t)vac) = |r.t), (e, t)|r' 1) = 8*(r — ') vac), (4.7)
and they are, as any other operators, also governed by the equation (4.1):

e ) =0 )P e, ) U 1), e t) = U d (e ) U, ). (s
4.8

Here 6%(r — r') denotes the three-dimensional d-function and |vac) is the vacuum ket.
The field operators satisfy the fermion anticommutation relations

D (' 8) + O ) (r, 1) = 8 (r — o),
D ) (r' 1) + (' )i (e, 1) = 0, (4.9)
P, )1 () + DY (' )9 (e, 1) = 0.

4.2 Relations between creation and annihilation op-
erators of different states

It will be very useful for the following calculations to express the field operators ﬁ(r, t) and
Yf(r,t) in terms of the creation and annihilation operators corresponding to other set of
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states than the coordinate eigenstates. So, let {|p)} be a complete orthonormal set of one-
electron states indexed by the variable p (in the following we will call these states generally
“modes”). An example can be the set of the momentum eigenstates. Using the expansion
of the unity operator, we can write

)= p)(plr.t) =D K" (r,tp) Ip), (4.10)

where K (r,t|p) = (r,t|p) is the probability amplitude that an electron gets to state |r,t)
from the state |p), or, in other words, the one-electron propagator in the p-r representation.
If af(p) is the creation operator creating an electron in the state [p) such that af(p)|vac) =
|p), we get by combining Eqs. (4.10) and (4.7) simply

Gl 1) =D K" (r,tlp) a' (p) (4.11)
p
and by the Hermite conjugation
d(r,t) = > K(r,tlp) a(p). (4.12)
p

Thus the relations (4.11) and (4.12) connect the creation (or annihilation) operators of
different states. The following anticommutation relations hold for the operators a'(p) and

a(p):

at(p)a(p') + a(p)a' (p) = é(p, '),
a(p)a(p') + a(p)alp) = 0, (4.13)
af (p)al(p') +al(p)a'(p) = 0,

where §(p,p') = 0, denotes the Kronecker delta.

Usually plane waves are considered as the modes of the field. As we have not made any
such assumption about the modes p, our formulas (4.11) and (4.12) are more general and
can be used for describing electron fields also in external electromagnetic fields.



Chapter 5

Electron state

If we want to describe coherence properties of electrons emitted by a specific source, it is
of fundamental importance to know what a multi-particle state is produced by the source.
We will concentrate on the most coherent electron source known up to now, a field-emission
gun. Unfortunately, it is not good known what a state is produced by such a source because
the mechanism of tunneling from metal to vacuum is very complicated. For example, up
to now there is no theoretical explanation for the observed low- and high-energy tails
observed in the field-emission energy spectra [18]. It might therefore seem hopeless to
calculate the correlation functions if we even do not know exactly what state we deal with.
Fortunately, in spite of the uncertainty of the state emitted by the field-emission tip, it is
possible to make some estimations of the form of this state.

The emitted electrons originate from the metal (a tungsten monocrystal at a room tem-
perature), where they are in a quasi-equilibrium state that is very close to a thermal state.
We say “close” because the equilibrium is partially broken by the applied electrostatic field.
In a thermal equilibrium state the density operator of the field has the form

exp(—BH)
Tr{exp(—GH)}

and is therefore diagonal in the energy representation. This means that there is no mutual
coherence or correlation between parts of the field with different energies. It does not seem
to be likely that an additional coherence would come into existence during the tunneling
process, even if we cannot, of course, exclude this possibility totally. This suggests that
the density operator of the emitted field is diagonal in the representation of states that come
out from the original energy eigenstates in the metal by the tunneling process. We will
call these states “modes” in the following and, to avoid problems with the normalization
of the density operator, we will suppose that the set of the modes is discrete.

The best approximation for the real electron state produced by the field-emission source
seems to be the so-called chaotic state that is described in the following. Therefore we will
concentrate especially on this state in this dissertation. However, we will give also some
other, maybe less physical examples of possible electron states to show the properties of
the electron correlations in a more complex way.

(5.1)

Pthermal =

21
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5.1 Chaotic state

The chaotic state was introduced first by Glauber [19] in optics and has two basic properties:
first, each mode of the chaotic field has a maximum entropy provided that the mean
number of photons in this mode is given, and second, the density operator of the field
can be expressed as a direct product of the one-mode density operators. The second
property means simply that in the chaotic state the individual modes of the field are
totally uncorrelated.

If we now generalize this definition on the case of electrons, the situation is very simple
because there are only two possibilities of occupation of each mode p — either there is one
electron or there is none. If we denote the corresponding kets as |1),, and |0),, respectively,
and the mean number of electrons in this mode as n(p), respectively, the most general form
of the density operator of the mode p can be written in the basis {|1),, [0),} as

p(p) = ( ncgf) 1_2@) ) , (5.2)

where a is a complex number. The maximum entropy condition then yields a = 0 and
therefore

R n(p 0
o0 = ("0 ) ) I 00 63
With respect to the second property of the chaotic state, the total density operator is

p=116p) = IT{I1 = n(p)]10)5(0l, + n(p) [1)p(L]5} - (5.4)

The product is made here over all, also the non-occupied modes of the field. If some
mode p is not occupied, it holds n(p) = 0 and its density operator corresponds just to
the vacuum state. The total mean number N of electrons in the system is given by the sum
of the average numbers of electrons in all modes, that is, N = 3, n(p). The probability
that any electron will be found in the mode p is then of course f(p) = n(p)/N.

5.2 Generalized chaotic state

Another example of a state satisfying the condition of incoherence between individual
modes of the electron field is a slight generalization of the state introduced by Silverman
[15]. In this state the density operator describing the electron field has the form

b= P0)pn, (5.5)

n=0

where

lan: Z fn(p17p27"' 7pn)|p1ap2a"'7pn><p17p27'"apn" (56)

P1se--s Pn
all p; different



CHAPTER 5. ELECTRON STATE 23

Here P(n) is the normalized distribution of particle number, f,(p1,p2,... ,pn) is the prob-
ability that if there are n electrons in the system, they occupy the modes py,...,p,, and
the ket |py,...,pn) denotes the totally antisymmetrical Fock state of n electrons in modes
P1,...,Pn. The reason why there are no terms in the sum with some p;, p; equal is that
in this case the state |py,...,p,) does not have any physical meaning due to the Pauli
principle. The functions f,(p1,ps,... ,pn) are symmetrical in all variables and normalized
as follows:

Y falprpe o) =1 (5.7)

------

In the next chapter we will see that the state (5.5) is a special case of the chaotic state.

5.3 Pure Fock state of n electrons in modes p;,...,p,

An interesting state of the electron field is a pure Fock state of n electrons that occupy
the modes py, pa,...,pn. The density operator has now a very simple form that can be
written as

Ia: |p1ap2a'"7pn><p1ap2a---;pn‘- (58)

5.4 Wave-packet state

The last example of a possible state of the electron field is the state of n equal wave packets
that have been randomly emitted from a source. Unfortunately, I have not managed yet
to calculate the correlation function of an arbitrary order for this state, but only the n-
electron one (i.e., the correlation function of the same order as is the number of electrons).
Moreover, it is completely unclear how to perform the averaging over the possible emission
times of the packets in a mathematically pure way. Therefore I will just refer at this place
to the article by Toyoshima and Endo [20] where the two-electron correlation function for
two wave packets is calculated.



Chapter 6

Calculation of correlation functions

Now we are coming to a very important part of this dissertation, the calculation of the cor-
relation functions for the individual states introduced in Chapter 5. The fundamental part
of this chapter will be devoted to the calculation of the correlation function for the chaotic
state and the obtained results will be then used often in the following chapters because I
think that this state describes the field-emission beams in the best way. The correlation
functions for the other two states (the generalized chaotic state and the pure state) will
be calculated just to cover a larger spectrum of the possible states and the results will not
be used any more. Before proceeding in the calculation, it is necessary to make several
assumptions.

6.1 Assumptions for the calculation

For practical calculations of the correlation functions, it will be very convenient to make two
important assumptions that are fully acceptable for the case of the field-emission electrons.

First, we will assume that the kinetic energy of the electrons is much less than their
rest energy, which will enable us to use the non-relativistic quantum theory for the cal-
culations. This is appropriate because in a typical electron correlation experiment we
deal with kinetic energies of order of kiloelectronvolts (in Tiibingen it is 2 keV), which is
much less than the electron rest energy of 512 keV. Moreover, I expect that the results
obtained by the relativistic theory even for higher energies would not differ from our ones
very much. The reason is that the principle of fermion indistinguishableness that in fact
causes all the correlations considered in this dissertation holds both in the relativistic and
non-relativistic theories.

Second, we will assume that the Coulomb interaction between the electrons can be
neglected. Indeed, the average distance of the electrons in a beam of an intensity typical
for field-emission beams is so large that the Coulomb force does not have any effect on
the electron velocity and position.

Beside these two important assumptions, we will consider in this chapter the case of
spin-polarized electrons. This will enable us to neglect the spinor structure of the electron
field and to treat it as a scalar field. However, this does not mean at all that we neglect

24
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the spin completely and in Chapter 7 we will calculate the correlation functions also for
partially polarized or completely unpolarized electrons.

6.2 Correlation function for the chaotic state

6.2.1 An alternative form of the chaotic state

As we have seen, the density operator of the chaotic state is

p=116p) = IT{I1 = n(p)]10)p(0l, + n(p) [1)p(L]5} - (6.1)

p

Now, it will be useful to express this operator in a form that is more convenient for the cal-
culation and also shows the structure of the chaotic state in a way alternative to Eq. (6.1).
To do so, we expand the product in Eq. (6.1). As a result, we get terms with various par-
ticle numbers n with n going from zero to infinity. To obtain the zero-particle (or vacuum)
part of p, we have to combine the states |0),(0[, for all p in Eq. (6.1). The coefficient of
the vacuum state in the density operator (6.1) will therefore be the product of the coeffi-
cients of the states |0),(0|,, i.e., of the terms [1—n(p)]. Similarly, the coefficient of the state
with a momentum p in will be n(p) times a product of the terms [1 — n(p')] for all p’ # p.
Thus the zero- and one-particle parts RU, R, of the density operator p are

R = [vac)(vac| [[[1 — n(p)], By =Y _n(p)p)m| [ [ —nb)

P p1 all p without p (62)

In an analogous way we can write the n-particle part R, of p:

Ry=— > np)-npa) p o pa) (P10 pn) II [1 —n(p)].

----- P .
all diﬁ':rent all p without p1,....pn (63)

The summation here is made over all the combinations of pq,...,p, with all p; different
from each other. To simplify the equations, we will denote such a sum as Z in
the following. As each set {p1,...,p,} appears n! times in the sum (6.3) while in Eq (6.1)
only once, we had to divide the sum by n! to obtain the correct result. Now, to write R,
in a more compact way, we denote S = [[,[1 — n(p)] and h(p) = n(p)/[1 — n(p)]. Then

- S '
Fou= 20 X B b)) ps sl (6.4)

It will be very useful to express the density operator p as an incoherent superposition
of n-electron density operators p, in the following way:

oo

Z n Dns (6.5)
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where

A

R,
Pn = 5~

This ensures that the operators p, are properly normalized. The trace of the operator
R, expresses the probability that there are n electrons in the system. With the help of
Eq. (6.4) it can be simplified as follows:

. S ' S /
n!pl,...,pn n!pl,...,pn (67)

Now, it will be very useful to assume that the number K of states |p) contributing
significantly to the density operator p is very large, as in the case of a quasi-continuous
momentum spectrum. We can do that because, in fact, the only reason why the discrete
set of the modes has been introduced was to avoid problems with the normalization of
the density operators. However, from the physical point of view, there is no reason for
the set of the modes to be discrete. This means that even if the spectrum of the modes is
very narrow (corresponding to almost monochromatic electrons), there are many occupied
modes. On the other hand, if K is very large, it holds

S h(py) - h(pa) = S h(py) - h(pn). (6.8)

P1s..sPn P1s..sPn

Indeed, the relative number of combinations py, ..., p, with p; = p; for some 7,5 (i # j)
with respect to the number of all combinations! behaves like 1/K and hence goes to zero
for large K. Therefore also the normalized difference

Y v MOOR(D2) - h(Da) =y B0 (P2) - - - h(pn)
Yptrpn WD) R(P2) -+ - h(py)

goes to zero and the approximation (6.8) is thus justified. We point out that Eq. (6.8)
turns into identity when we go over to the continuous spectrum because K then goes to
infinity. Then Eq. (6.8) holds exactly and is in fact no approximation.

From the assumption that K is large it follows that the values n(p) are very small.
Then we can calculate the product S easily using the properties of the exponential and
logarithm functions:

= 10~ i) = ex0 {;mu ]} e |- gn(m] —e v (69)

Substituting Eq. (6.8) into Eq. (6.7), we get for P,

Fu % > h(p1) - hipn) = e_NNn, (6.10)

|
" P1yePn n.

Lof course, we consider now the momenta belonging to the set of the corresponding K eigenvalues only
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where N' =3 h(p). To see what is N equal to, we expand h(p) using n(p):

n(p) 2
h(p) = ——— =n(p) + [n(p)|" + ... 6.11
() = 220 =) + (o) (6.11)
As the numbers n(p) are small, we can neglect now all the higher terms with respect to
n(p) and hence we see that h(p) ~ n(p) and N’ &~ N. The electron-number distribution P,
thus becomes a Poissonian distribution
e NV N7

Po=———. (6.12)

With the help of Egs. (6.6), (6.9) and (6.4), the n-electron density operator p, can be
expressed as

R, 1 ,
pn =7 == > h(p)h(p2) - h(pn)p1,- - on) (D1, - - Pul. (6.13)
pn anl ~~~~~ Pn
Even if we could write now again the simple sum instead of 3> . we will not do so

because this form will be more useful for further calculations. Defining f(p) = n(p)/N and
approximating h(p) by n(p), Eq. (6.13) becomes finally

=3 F0) ) FDa)|prs- - o) D1y Dl (6.14)

""" DPn

The function f(p) expresses simply the probability that an electron randomly chosen from
the system will be found in the mode p. Thus f(p) can be called the one-electron mode-
spectrum distribution (in analogy to e.g. one-electron energy distribution). The mode-
spectrum distribution satisfies the normalization condition

> flp)=1. (6.15)

Now we are ready to go over to the derivation of the correlation function.

6.2.2 Calculation of the k-electron correlation function for the
chaotic state

The k-electron correlation function expressing the probability density of finding £ electrons

at points 7y, ..., 7, and times ¢y, ...,t; was defined in Chapter (3) as
GW = Te{pg)f -+ pfady -1 . (6.16)
We have omitted now even the indexes 1,2,...,k to save place for another index that is

about to come. With the help of the relations (4.11) and (4.12) we can express the product
of the field operators in Eq. (6.16) in the following way:

{a}.{¢} (6.17)
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Here 3¢,y (yy €xpresses the summation over g1, ..., q and ¢j, ..., g;. Using the form (6.5)
of the density operator p, we can write

~

G = 3 Pl Bl i} = 3 PG, (6.13)

n=0 n=0

where G(*) is the correlation function corresponding to the n-electron density operator p,.
With the help of Eqs. (6.14) and (6.17), this correlation function can be now expressed as

G = > Y ) f ) Kia) - K@) Kilgy) - K (d))

{a}.{q'} P1,--sPn

X Te{|pr,. . pa)(prs o paldf (@) -+ (ge)a(gp) -~ algh) } . (6.19)

Now, the key part of the calculation comes. As is shown in Appendix A, page 33, it
follows from the anticommutation relations (4.13) that the trace in Eq. (6.19) is equal to

Tr{[pr - pa){prs -, pald! (@) ---d (ar)alay) - - aldh) }

n

= > sign(P) 3 (g1, gpy) (G dhw) D O(pirs@r) -+ (pi k). (6.20)

rer an'§ iront
Here P, PU), and sign(P) denote a permutation of k£ indexes 1,2,...,k, and the j-th
element and sign of this permutation, respectively. The first sum is made over the set P
of all permutations. The fermion nature of the electrons is demonstrated by the factor
sign(P).

We make our notation more clear on an example with & = 3. Then the set of all
permutations is P = {(1, 2,3),(3,1,2),(2,3,1),(1,3,2),(3,2,1), (2,1, 3)} and if we choose
the permutation P = (2,1,3), we have P() = 2, P® = 1, PO®) = 3, and sign(P) = —1
because the permutation is odd.

Substituting Eq. (6.20) to Eq. (6.19) we obtain

GP = > Kiq) - Ki(a)Ke(g) - Ki(q))

{at{d'}
Z sign(P) 5(@/1, qlp(l)) ot '5(%, Q{a(m)
PeP
n !
D] 4eens =1 Pl,..., Pn
all i different
In Eq. (6.21) we calculate first the the sum over the n momenta py,...,p,. It is useful to
note that for every possible combination iy, ..., 7, with all ¢ different it holds due to the
normalization condition (6.15) of the function f(p)

S ) fon) i ar) - 6(piy k) = Flar) - flaw), (6.22)

P1s--sPn
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that is, the sum does not depend on the indexes iy,...,i;. We have used here again
the approximation >.' — Y. Therefore all the n(n — 1)---(n — k + 1) terms (we will
denote this product as V(k,n) in the following) in the sum over iy, . .., i all different from

each other give the same result and we obtain

n

S S F o) FPa) Sisar) - 8 (pigs ar) = V(kn) flar) - flar).
0= pin (6.23)

all i different

Next we substitute Eq. (6.23) into Eq. (6.21) and evaluate the sum over the momenta
/ /
Qe

GH =V(kn) S flg) - fla) Ki(a) - Ki(g) Ki(q}) - K1 (q})

{a}.{d'}
> sign(P) 5(% Q{o(l)) . '5(%, Q{a(m)
Pcp
=V(k,n) ) sign(P Z flar) (qr) Ki(q1) -+ K (qe) Kpoy (q1) -+ - Kpoo (qr).  (6.24)

PEP """
Gathering the terms with equal ¢;, we can write the result in the form

G®) =V (k,n) > sign(P Zf Q) Kpw (g Zf p (),
PeP (6.25)

We see that the correlation functions for different electron numbers differ from each other
only by the multiplicative factor V' (k,n). Therefore due to Eq. (6.18) the evaluation of
the “total” correlation function G*) reduces now to averaging this factor for the Poissonian
distribution (6.12). It is easy to verify that for this distribution (V(k,n)) = (n(n —
1)---(n—k+1)) = N*¥ holds and for G*) we get

= i PGP = N* 3 sign(P Zf (@) Kpw (q) - Y flq) KZ(Q)KP(M((‘J)- )
n=0 PeP q 6.26

If we denote

Ty =NY_ fla) K () K(q), (6.27)

q

the equation (6.26) can be written in the form of a determinant

I'yp T o0 T
Fer Tre oo T

This result has been obtained also by Saito et al. [16] and the whole calculation has been
published in [21].



CHAPTER 6. CALCULATION OF CORRELATION FUNCTIONS 30

It is very useful to note that I';; = <zﬁjzﬁ]> = Tr{ﬁzﬂgiﬂj} (for the proof see Appendix
B, page 35). Thus the elements of the determinant in Eq. (6.28) are in fact the correlation
functions of the first order with unequal arguments (the field operators correspond to two
different space time points) referred to as the cross-correlation functions in quantum optics
(see [1], pages 422 and 583—585). We also introduce the complex degree of coherence

T
! (6.29)

Yij = s
Yty

5

which is the normalized cross-correlation function. To express the correlation function G*)
in terms of the complex degrees of coherence, we use the properties of determinants and
the fact that I;; = G\ for all i, which follows from Eq. (6.28) for k = 1. Then

I m2 - 7k
1 ...
G =ahad..qh| b (6.30)
Vi Ye2 -.. 1

6.3 Correlation function for the generalized chaotic
state

Comparing Egs. (5.5) and (5.6) with Eqs. (6.5) and (6.14), we see that the state (5.5) is
a special case of the chaotic state. The calculation of the correlation function is completely
analogous to the one performed for the chaotic state. Therefore we will show here only
the steps where there is a difference.

We express the correlation function again as the weighed average of the correlation
functions corresponding to n-electron density operators in analogy with Eq. (6.18):

o o

GW = 32 P Te{pud] - bl -t} = 3 PG, (6:31)

For the correlation function GSZ“) corresponding to the n-electron density operator p, we
get in analogy to Eq. (6.21)

GP = 3 Ki(q) - Kila) Kildy) - Ki(q))
{a}{d'}

> sign(P) 5((]1, q{D(l)) - '5(%, Q{o(k))

PeP

i Z ’fn(pla . apn) 6(pz'1; Ch) e '5(pik, qk). (6.32)

LAY ig=1 Di,.,Pn
all i different
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Thanks to the symmetry of the function f,(pi,...,pn) is holds

i Zlfn(pla"' 7pn) 5(p117q1)5(p1k7q19)

D] yenes =1 Pl Dn
all ¢ different

=V(kn) Y folar o a) =V S (... q). (6.33)

In this way, the k-electron momentum distribution f,(lk)(ql, ..., qx) corresponding to the
n-electron density operator is defined. After the summation over {¢'} and n we then get

G = Y sign(P) Y Kila)- - Kilao) Koo (a1) - Kpo (@)

PeP q1y--sqk
n=k
If we define the k-electron momentum distribution f(k)(ql, ..., qx) corresponding to the to-

tal density operator p as

?zo:k P(n) V(k: n) fv(zk)(QI: s 7Qk)

(k) -
qi,---,4q - 635
where (V)®) = 5 P(n) V(k,n), we obtain the final form of the correlation function
G* = <V>(k) Z sign(P) Z f(k)(cha s a) K (@) - Ky () Kpos (@) -+ Koo ().
PeP q1yees (6.36)

6.4 Correlation function for the n-electron pure state

Next we will calculate the k-electron correlation function for the m-electron pure state
defined in Chap. (1),

ﬁ: |p1;p2:"'7pn><p1:p2:"'7pn‘- (637)

The calculation will be again very similar to the previous cases. Combining Eqs. (6.37),
(4.12), (4.11) and (3.4) we get

GM = 3 Ki(a)-- Ki(a) Kilg) - Kilg)

{a}.{d'}
X T { (D1, cees Pa) (D1, oo ol (@1) -+ @ (@r)algy) - alg}) } . (6.38)
Note that there is no summation over the modes pq, ..., p, because the information about
the electron state is contained now in the set {py,...,p,}. Using the expression (6.20) for

the trace, we obtain

G = 3 Ki(a)-- Ki(a) Kilg,) - Kig)

{a}{d'}
> sign(P) (a1, qp) -0 (asgpw) X S(pis @) S(piar)- (6.39)
PeP i1,nip=1

all i different
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We perform first the summation over ¢y, ..., g, and then over ¢, ..., q:

S S K)o Kion)Kild)) - Ka(d)

D] yurns i =1
{q } all i different

x Y sign(P) 6(piy, dpy) -+ - 6 (Dig» o)
pep

= Z > sign(P) K (pi,) - K (i) Kpoo (pi,) - - Kpo (piy). - (6.40)

D] 5ens i,=1 PecP
all i different

It is clear from Eq. (6.40) that if k& > n, the correlation function G*) is equal to zero — as
there are only n occupied modes, there cannot be £ different occupied modes p;,,...,p;,.
This must be so because if there are only n electrons in the system, the probability of
finding more than n electrons is zero.

In the sum in Eq. (6.40) miss the combinations of indexes iy, ..., i, in which some
indexes are equal. However, adding such combinations to the sum does not change the right-
hand side of Eq. (6.40) because if some two indexes i,, 14, are equal, the summation over
the permutations P gives zero. Therefore we can write

G* = Z > sign(P) K{(pi,) - - - Ky (pi, ) Koo (pi,) - - - Kpow (piy)-

it,.ip=1 PEP (6.41)
The problem is now to evaluate the sum over the indexes iy,...,%,. For this purpose we
define the function A(p) in the following way:
L if pe{p,...,pu}
Ap) = . B . 6.42
(p) {0 if p&{p,....,pn} (6.42)

Alternatively, A(p) can be expressed as Y1, §(p, p;)-
It can be shown that for any function F' it holds

Z F(piy,..-omi) = Y. Ala)A(g) - Ala) Flar, . .., ar). (6.43)

To prove this, we evaluate the right-hand side of this equation using the alternative defi-
nition of A(p):

> Alg)A(ge) -+ Alar) Far, - -+, qr)

q1,---5qk
Z Z 6(qipi) - D 6(qw,vie) Flar, - aw) = >, Fpi,.--, i) (6.44)
----- qr 11=1 ip=1 Byl =1
Using the formula (6.43) in Eq. (6.41), we get
Z Alqr) -+~ Algr) Y sign(P) Ky(q1) -+ K (ax) Kpoo (ax) - - Kpoy (@1)
----- PeP

= > sign(P) > A(q) K1 (q)Kpwy(q) --- Y Aq) Ki(9)Kpw (q). (6.45)

PeP
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If we denote I';; = >, A(q) K (q)K;(q), this result can be written precisely as for the chaotic
state in the form of a determlnant

'y T o0 T
ok — Ffl FfQ F?’“ _ (6.46)
Fer Tre o0 T

The I';; expresses again the cross correlation function, i.e., I';; = Tr{pﬁ/;*(rl, )ﬁ(r], )},

which can be proved in a complete analogy with the derivation of G(*)

It is reasonable to introduce the one-electron momentum distribution for our system,
especially if the number n of electrons is large. The probability that a randomly chosen
electron has the momentum p is evidently equal to 1/n if p € {p1,...,p,} and zero other-
wise. Thus the momentum distribution f(p) can be expressed easily with the help of A(p)
as

flp)=—. (6.47)

Note that 3°, f(p) = 1, which must hold for a probability distribution. Substituting
Eq. (6.47) into Eq. (6.45), we get

k) — pk Z sign(P Zf Q) Kpw (q Zf (¢) Kpw (),
PeP (6.48)

which is the k-electron correlation function expressed in terms of the one-particle momen-
tum distribution.

Comparing Eq. (6.48) with Eq. (6.26), or Eq. (6.46) with Eq. (6.28), we see that the form
of the correlation functions for even very different states can be the same. This might
suggest that the nature of correlations in electron beams is quite universal and maybe not
so much sensitive to the exact form of the state in question.

Appendix A: The trace in Eq. (6.19)

As we have seen, the trace of the operator

1, Pa)(Prs - - Palat () a7 (g2)a(gs)alq)) (6.49)

enters the calculation of the k-electron correlation function in a very important way.
The evaluation of the trace is based in principle on the anticommutation relations (4.13)
holding for the electron creation and annihilation operators. Now we will perform this
evaluation, but instead of using a very formal way issuing directly from the anticommuta-
tion relations, we will rather explain the calculation more intuitively. The method will be
shown first on the case k = 2 and then generalized on a case of an arbitrary k.
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The trace for k£ =2
If (2| and |1) are some states in the Hilbert space, the following identity holds:

Tr(]1)(2[) = (2[1). (6.50)

This is generally used when one goes over from the state-vector description to the density-
operator description of quantum states. Putting [1) = |py,...,p,) and

(2] = (p1....,pala™ (q1)a™ (q2)algy)alq)), we get

Tr {[pt, - pa) (D1 - pald* (@)™ (02)algh)ald}) §
= (p1,. . pala (@)a" (g2)a(az)alay)lpr, - pa). (6.51)

The right-hand side of Eq. (6.51) can be viewed as a scalar product (u|v) of two vectors
lu)y = a(q)alqr)|p1,---,pa) and |v) = a(g)a(q))|p1, ..., pn). Because of orthonormality
of the state vectors corresponding to different sets of modes, this product vanishes unless
precisely the same modes in both the vectors |u) and |v) are occupied. The vector |u) has
been obtained from |py,...,p,) by taking away two electrons in modes ¢, ¢o and similarly,
the vector |v) has been obtained from |p,...,p,) by taking away two electrons in modes
qi,q5. Therefore the product (u|v) vanishes unless

either ¢ =¢}, ¢ =4d), (6.52)

or qi=qy, G2=q. (6.53)

In the first case (6.52) we have |u) = |v) and therefore (u|v) = 1. In the second case
(6.53), however, due to the anticommutation relation a(q;)a(g) = ( 9)a(q) holding for

the annihilation operators we obtain

w) = a(gy)alqy) pr, - - pa) = alq)alge) Ip, - - pa) = —a(g2)a(qu)|prs -, pn) = —|u)
(6.54)

and therefore (u|v) = —1. So if |u) and |v) are both different from the zero vector, it is
not difficult to express the product (u|v) with the help of Kronecker deltas:

(ulv) = 6(q1,41)0(q2, 45) — (a1, 45)0 (2. 41). (6.55)

Now, it can happen that some of the modes ¢, g2, ¢}, ¢, are not contained in the set
{p1,...,pn}. Then, of course, one or both of |u), |v) are equal to the zero vector and
the scalar product (u|v) is hence equal to zero. It is not necessary to investigate whether all
the four modes ¢, ¢, ¢, ¢4 are contained among py, .. ., p, because if one of the conditions
(6.52), (6.53) is fulfilled, from ¢1,¢2 € {p1,...,pn} it follows that also ¢}, ¢, € {p1,...,pn}-
It is again easy to write down an expression that is equal to unity if ¢;,q2 € {p1,...,pn}
and zero otherwise:

n

Z ql:pz QQ:pj)- (656)

#j
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The terms with 7 = j are omitted in the sum because they would give nonzero results for
¢1 = @2, which cannot be because a(q;)a(q;) = 0 for fermions.

Altogether, we see that it is possible to express the scalar product (u|v) with the help
of (6.55) and (6.56) as

(ulo) = [5(a1, 000 05) — 8(ar, )6(an )] S S0 p)0(anmy).  (657)

ij=1
i#j

The trace for arbitrary k&

If we now compute the trace in Eq. (6.19) for an arbitrary k, we proceed in the com-
pletely analogous way: however, instead of the two conditions (6.52), (6.53) we have now
k! conditions, corresponding to k! permutations of k indexes 1,2,..., k. The condition
corresponding to the permutation P can be expressed as

41 = Q{o(n; a2 = Q{o@), sy Qe = Q{o(m- (6.58)
The term expressing whether the sets {qi,...,q} and {¢}, ..., q,.} contain the same modes?
looks therefore as
> sign(P) 6 (a1, gpr ) -0 (ar g ) (6.59)
PeP
On the other hand, the expression that is equal to unity if all the modes ¢, ..., g are
contained among py, ..., p,, and equal to zero otherwise, can be in analogy with Eq. (6.56)
written as
n
Yo 0pisa) - 0(Dis ar)- (6.60)

Tl yneey ip=1
all ¢ different

Combining the expressions (6.59) and (6.60), we finally arrive at
(1, opala” (@) @t (an)alay) - aldh)lpr, - pa)

n

= ) sign(P) 5(@1;@{3(1)) "'5(%(1{3@)) > 0pisa) (i), (6.61)

PeP iy ip=1
all ¢ different

which we wanted to prove.

Appendix B: Derivation of the cross-correlation func-
tion for the chaotic state

With the help of the relations (4.11) and (4.12) we express the operator
w;% = T (r;, t:)(rj,t;) as follows:

Pl = ZKZ‘(Q)Kj(q’) a'(q) alq). (6.62)

2the term is equal to unity if the two sets are the same and equal to zero otherwise
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Then the cross correlation function is equal to

Tr (i) =3 32 F(pr) -+ £(pa) K (@) K(0) Te{[pr, o) (1, - paldf(q) a(d) }

q,q' P1s--sPn
n

=3 Y F ) foa) Kf(@)Ki(d) 6(a.4) Y 6(a.ps). (6.63)

q,q’ P1s-sPn s=1
After the evaluation of the sums over py,...,p, and ¢’ in a way analogous to the one used
during the calculation of the correlation function, we obtain
Te(pathl ) = > f(a) K} () K;(a). (6.64)
q

and with the help of Eq. (6.5) we get the desired result

Tr(pgl ;) = NS fq) K (9)K;(q) =Ty (6.65)



Chapter 7

Correlation functions for partially
polarized beams

Up to now we have considered the case of spin-polarized electrons. This is of course a
situation we hardly meet in experiment where we deal mostly with just partially polarized
or totally unpolarized beams. To make a precise description of such a situation and calcu-
late the correlation functions, it would be necessary to index the field operators (4.7) not
only with the variables r and ¢ but also with the spin variable. The correlation functions
could be then defined either with the consideration of the spin or without it. This way, we
could calculate e.g. the probability of detecting k electrons at the space-time points (r;, t;)
(1 = 1,..., k) with particular spin orientations at each point. However, in a real experi-
ment we are glad to detect an electron and have not much thinking of measuring its spin
at the same time. Therefore we are interested in the detection probability regardless to
the spin orientation, which is given by the “spinless” correlation function. In this chapter
we will show a heuristic derivation of such a correlation function for a partially polarized
electron beam using simple argumentation and avoiding the above mentioned definitions
of the spin field operators. We will show that it is possible to express the k-electron corre-
lation function with the help of correlation functions for a polarized beam of all orders up
to k.

7.1 Independence of two spin components

We say that a beam is polarized with respect to an axis a if the spins of all electrons in
the beam have the directions of this axis. If |1) and |2) denote the one-electron spin states
“up” and “down” with respect to the axis a, the one-electron spin density operator of such
a beam is simply

ps = [1)(1]. (7.1)

37
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If the beam is only partially polarized, the corresponding spin density operator describes
no more a pure state and its diagonal form is rather

ﬁs=p11><1+p22><2=<%1 0 ) (72)
P2

where p; and py (p; + p2 = 1) are the probabilities that the spin is oriented up and
down, respectively. The fact that the density operator is diagonal means that there is no
correlation between the two spin components up and down. This is very important: as
there is no correlation between the two components, the emission of partially polarized
electrons by the source is equivalent to an emission from two independent spin-polarized
electron sources. Both of these two “new” sources are of course located at the place of
the original source and their emission intensities are equal to p; and py times the intensity
of the original source, respectively.

7.2 Two-electron correlation function

The two-electron correlation function expresses the probability of the event of finding two
electrons at the points (7r1,%;) and (r9,¢3). This event can be divided into four cases
that are distinguishable in principle because the coordinate and spin operators mutually
commute:

1. the spins of both electrons are oriented up
2. the spins of both electrons are oriented down

3. the spin of the electron at (r1,¢;) is oriented down, the spin of the electron at (7o, t5)
is oriented up

4. the spin of the electron at (7, t;) is oriented up, the spin of the electron at (7s,¢5)
is oriented down.

The two-electron correlation function in the cases 1. and 2. is simply equal to the analogous
correlation function Gg) for polarized electrons because we have two electrons from the
same polarized source. On the other hand, in the cases 3. and 4. we deal with two
electrons from two independent, oppositely polarized sources. Therefore the electrons are
uncorrelated and the correlation function is equal to the product of one-electron correlation
functions, i.e., Ggl)GéU. As the probability that one electron is polarized up or down is
p1 OT po, Tespectively, the probabilities of the cases 1. — 4. are evidently p?, p2, pipa.
and p;pg, respectively. The total correlation function can be then written as the weighed
average

OF = (i + p3) G + 20102 G1V G (7.3)
(we denote it as Og)
electrons).

to distinguish it from the correlation function G(122> for polarized
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We can now express this result for the chaotic state. So, after substituting Gg) =
G(ll)Gél)(l — |12/%) according to Eq. (6.30) into Eq. (7.3) we obtain

0% = (02 + p2) GG (1 — [719?) + 20102 GV G = GV G {1 —(p} + Pg)] 712
(7.4)

It is very convenient to introduce the degree of polarization P !,

P:pl_p2:p1_p2 (75)

(we suppose that p; > po), which is equal to unity for a completely polarized beam (p; =
1,p2 = 0) and equal to zero for a completely unpolarized beam (p; = ps = 1/2). Using
Eq. (7.5) and the normalization condition p; + p; = 1, we can express py, po in terms of
the degree of polarization P:

_1+P 1P

PL=—"5" P75 (7.6)

Substituting this into Eq. (7.4), we obtain

1+ P?
o) =ciay (1 T ’712|2> : (7.7)

This equation shows that the correlation, given by the second term in the parentheses, is
still present for partially polarized electrons but its “strength” is only (1 + P?)/2 times
the strength of the correlation for polarized electrons. For example, if we have a 50% polar-
ized beam, the correlation is reduced by the factor 0.625, and for a completely unpolarized
beam for which P = 0, the correlation reduces to one half.

It is worth noting that in quantum optics the same result has been obtained — for
thermal light with the degree of polarization P, the correlation (in this case bunching) is
also reduced by the factor (1 + P?)/2 with respect to polarized light (see [1], page 432).

7.3 The k-electron correlation function

Now, if we deal with k electrons at k points (rq,%1),..., (74, 1), there are 2 possibilities
how they can be polarized. We denote each of them by the sequence sy, so, ..., s, every
s; expressing the spin polarization of the electron at the point (r;,¢;) and having one of
two possible values, 1 for spin up and or 2 for spin down. The probability P(si,...,sk)
that the electrons have polarizations sy, ..., s, is evidently equal to p’flp;”, where k; and

'The degree of polarization is defined using the parameters p;, p» for the axis for which the difference
p1 — p2 is maximal. The proof that precisely this is the axis for which the spin density operator is diagonal
is given in Appendix, page 41.
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ko expresses how many times there appears 1 and 2 among the numbers sy, ..., Sk, respec-
tively. If O (51, ..., Sg) denotes the k-electron correlation function for this particular
spin comblnatlon the total k-electron correlation function can be written as

> P(sl,...,sk)ng) w(S1, .00y Sk), (7.8)

EE)
815438k

the sum being made over all the possibilities sq, ..., sx. Now, if the spin polarizations of
the electrons are sq, ..., sg, the situation is the same as if we dealt with two independent
sets of electrons — one set of k; up-polarized electrons originating from the first source and
another set of ks down polarized electrons originating from the second source. The cor-

relation function O (31, ..., 8k) factorizes therefore into a product of two correlation
functions for polarlzed electrons:
OF) (51, ss1) = G* ({7, thup) G ({7, taown). (7.9)

Here {r,t},, and {r,t}4own denote the sets of points at which the electrons are polarized
up and down, respectively. Using Egs. (7.8) and (7.9), we can write a few first terms in
the sum:

k k
o, = (o +05) G\,
+ (o e+ b ) (G NG + Glg LG8+ a6

k— k—
+ (Plf 2/3% + PIQC ZP?) (G( 2)G1 2T GQ A, G( et Gg,...?kLZGEch)I,k) +... (7.10)

To see the structure of such a series better, let us write down the three- and four-electron
correlation functions for illustration:

O = (ot +03) Gi%s + (plps + pipn) (GIGEY + GIAGY) + GGY)
(7.11)

4 4
O§,2),3,4 = (P% + P%) Gg,%,3,4
+ (o2 + pior) (G146 + GILLGY) + GG + G LG
+ 2pip3 (G(l %G3 4T Gl 3G24 + GgQ G % ) . (712)

In this way the k-electron correlation function for partially polarized electrons is ex-
pressed in terms of the one-, two- etc. up to the k-electron correlation functions for
polarized electrons and the degree of polarization (that is connected with p;, ps via the re-

lations (7.6)). It is evident that for big & the function O(k) does not reflect the k-particle
correlation function G k very much as soon as P differs even slightly from unity. For
example, if we have k=10 and P = 0.9, the term (p% + pk) is equal to only about 0.6, so

the function O k contains only 60 percent information about the polarized ten-electron
correlation function. The remaining 40 percent correspond to the correlation functions
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of lower orders. Thus we see that if we do not have a beam with a very high degree of
polarization, it is of very little use to try to measure the correlation functions of higher
orders. However, we have been much too optimistic even in having the idea of measuring
the ten-electron correlation function; in comparison to the extreme difficulty of such an ex-
periment, making a 99,9%-polarized electron beam seems to be just a funny coffee-break
problem.

Appendix

As has been already mentioned, if one measures the projection of an electron spin to any
axis, there are two possible results of this measurement, say “up” and “down”. If we
denote ¢; and go the probabilities of these results, respectively, there exists some axis for
which the difference ¢ — ¢» is maximal. The degree of polarization is then defined as
P=(q1 —q)/(q1 +q2) = ¢1 — g2 for this particular axis. We will show now that this axis
is identical with the axis a with respect to which the one-electron spin density operator
diagonalizes.

Let {|1),]2)} denote an orthonormal basis in which the spin density matrix has a diag-
onal form

. 0
p= (0 0 ) =il me (7.13)
P2
with p; > po. Any other orthonormal basis {|a), |b)} in the two-dimensional Pauli spinor
space can be expressed through the original basis in the general form
la) = ull) —v]2), [b) = e (v*[1) +u*[2)), (7.14)

where u,v are complex numbers satisfying the condition |u|? + [v]* = 1 and ¢ is a real

number. The density matrix in the basis {|a), |b)} has then the form
2 2 i k(o
p= ( 6%@5;}(;17ﬂ 522) e‘ul\gpq; EﬁUZZf) ) ' (7.15)
The absolute value of the difference of its diagonal elements is hence
U = [[ul*py + [v[2p2 = [ulp2 — [v*p1| = |([ul* = [v]*)| (p1 = p2)- (7.16)
With the help of the condition |v|*> = 1 — |u?| this can be written as
U =@l = Do = p2). (7.17)

As 0 < |u| <1 holds, U is maximal for ju| =0 = |v| =1or |ul =1 = |v] = 0. In both
of these cases the basis |a), |b) coincides with the basis |1), |2), however (up to some phase
factors or the coordinate permutation). Thus we see that the difference U is maximal for
the basis in which p has a diagonal form (7.13), that is, for the basis corresponding to
the axis a defined in section 7.1, and it therefore holds




Chapter 8

Algebraic structure of correlation
functions

In this chapter we will concentrate on interesting properties of the correlation functions of
the chaotic state. Most of them exist because of the determinant form of the k-electron
correlation function enables to apply the formalism of linear algebra to obtain very inter-
esting general results. The argumentation is this chapter will be therefore a little bit more
mathematical than usually but we hope the reader will not be bored about it.

As the key part of this chapter, we will prove a very important inequality that is
fundamental for understanding the properties of the free-electron correlation functions.
This inequality states that

G(H—m) (rla tl) ey rl+m> tl—l—m) S G(l) (rla tl) o Py tl)G(m) (rl-l—l) tl-l—la ... 7rl+77’h tl-l—m)a
(8.1)

or, in the shortened notation,

l+m l m
G m < G Gl o i (8.2)

g Lyuiny

The proof is not trivial and we will need two supporting lemmas for it.

Lemma 1: Upper bound of the determinant of a positive-definite Hermitian
matrix
The determinant of any positive-definite Hermitian matrix A = (A;;) cannot exceed
the product of the diagonal elements of A, i.e., det(A) < AjjAgs - - - Ay, and the equality
takes place if and only if A is diagonal.

Proof: Thanks to the positive definiteness of A, all its diagonal elements A;; are
positive. Then we can define the matrix a = (a;;) with elements a;; = A;;/\/AiuA;;.
The matrix a is also Hermitian and its diagonal elements are equal to unity, so it has

42
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the form
1 ap ... an
. a:gl 1 G:Qk . (8.3)
g ... 1

Thanks to the hermiticity of the matrix a, it is possible to transform it into the diagonal
form with a unitary transformation, i.e., there exists a unitary matrix U for which the
matrix b = UaU" is diagonal. This transformation changes neither the determinant nor
the trace of the matrix because it is a unitary transformation. If we denote the diagonal
elements of the matrix b as b;, then Tr(a) = Tr(b) = =¥, b; and det(a) = det(b) = [T-_, b;
evidently hold. At the same time, from Eq. (8.3) it follows that Tr(a) = k. To find
out what is the maximal possible value of det(a), we will use now the inequality between
the arithmetical and geometrical averages. The arithmetical average of the numbers b; is
o= Y% bi/k =1 and their geometrical average is # = {/[]*_, b;. As the numbers b; are
positive, the inequality # < « holds, from which it then follows that

det(a) = ﬁb <1 (8.4)

As is known, the equality = « takes place if and only if by = by = ... = b;. In this case
the matrix b is the unit matrix, from which it follows that a is also the unit matrix and
a;; = 0(i,7). Thus, det(a) < 1 holds and the equality takes place only when all the non-
diagonal elements of the matrix a vanish. Using the definition of a;; and properties of
determinants, we can express the determinant of the original matrix A with the help of
det(a) in the following way:

det(A) = A11A22 s Akk det(a) (85)
Then, from the inequality det(a) < 1 it follows
det(A) S AHAQQ tee Akk- (86)

Moreover, A is diagonal if and only if @ is diagonal. Therefore the equality in (8.6) takes
place if and only if the matrix A is diagonal.

Lemma 2: Hermiticity and definiteness of the matrix I'¥)
The matrix of the cross-correlation functions

is Hermitian and either positive-definite or positive-semidefinite.
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Proof: The hermiticity of T®) follows simply from the fact that Iy = <1ﬂjzﬂj> =
<1ﬂ;zﬁl>* = I'};. The proof of the second property will be based on the proof of an analogous
statement for the case of photons in [1|, p. 585. Let O be the operator defined as

k
O => X\, (8.8)
i=1
where Ay, ..., \; are arbitrary complex numbers. It is trivial to show that the quantum-

mechanical average of the operator 010 is a non-negative number. At the same time, it
holds

k k
(010) = > X n () = 30 A\ T (8.9)
ij=1 =1

As the right-hand side of this equation is at the same time a quadratic form in the \’s,
the matrix I'® formed by the numbers I';; must be either positive-definite or positive-
semidefinite.

8.1 Proof of inequality (8.2)

Now, we can go back to the proof of the inequality (8.2). First, we will define two matrices
of the type (I+m)/(l+m): the matrix ' composed simply of the cross-correlation functions
Fl,l Ce Fl,l-l-m

= (8.10)

1—‘l-i—m,l cee 1—‘l—l—m,l-l—m

and the matrix IV in the block form

rd o

Here 0 stands for the zero matrices of the type [/m or m/l and I®, 70 are the matrices

of the type [/l and m/m, respectively, corresponding to the correlation functions Ggl}_’l

Ly Ty Fipigrr o0 Dipigm
F(l) = . . , F(m) = . .

Lo Ty Civmarr -+ Divmgem (8.12)

So, the matrices I' and I'" differ only in the two non-diagonal right-angle parts of the type
[/m and m/l. Due to Eq. (6.28) and the block form of I" it holds

G L =det(D), GV G L = det(TD) det (D) = det(I).
(8.13)
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Now, we know that the matrix I' is either positive-definite or positive-semidefinite. In
the latter case, the inequality (8.2) is satisfied trivially because then det(I') = 0 and
det(T'®), det(I'™) are both non-negative due to Lemma 2. Therefore in the following we
will discuss the case when I' is positive-definite.

As the matrices T'W and '™ are Hermitian, it is possible to transform each of them
into the diagonal form with a unitary transformation. Let U®) and U™ denote the corre-
sponding unitary transformational matrices, so that the matrices D = UOTOU O and
D = ytTm it are both diagonal. Then evidently the unitary matrix

ub 0

transforms the matrix I into the diagonal form, so that D' = UI'U" is diagonal. Let D
denote the matrix obtained from I' by the same unitary transformation, i.e., let D = UTUT.
Thanks to the block form of the matrix U, the matrix D has the form

DO plim)
D= ( i (8.15)
where DU™) and D(™) are some mutually Hermite-conjugate matrices of the type I/m
and m/l, respectively. Applying now Lemma 1 to the matrix D (we can do that because
D is positive-definite and Hermitian; the latter follows from the unitarity of the matrix
U), we see that det(D) < det(D') because the diagonal elements of the matrices D and

D' are identical and D' is diagonal. Combining this with the equations that hold due to
the unitarity of the matrix U,

det(D) = det(T"),  det(D') = det(T") = det(T") det(T"™), (8.16)

and with Eq. (8.13), we finally obtain the inequality (8.2). Now, inequality det(D) <
det(D') changes into equality if and only if the matrix D is diagonal, i.e., if D!™ and
D) are the zero matrices. Then, again due to the block form of the transformation
matrix U, also the matrices

Cigvr oo Tiigm Fipig o0 Ty

F(lm) o F(ml) o

Pigvr oo Diggm Civma oo Dipmu (8.17)

are the zero matrices. Thus we can conclude that the inequality (8.2) holds and changes
into equality if and only if all the complex degrees of coherence I'; ; vanish for ¢ =1,...,1
and j=1+1,...,1+m.

8.2 Fermionic nature of electron correlations

The inequality (8.2) that we have just proved says that the probability of finding [ + m
electrons at the points (r1,¢1),..., (Pi1m,tim) is always less or equal to the probabil-
ity of finding [ electrons at the points (rq,t;),..., (7, ;) multiplied by the probability
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of finding the remaining m electrons at the points (r;11,¢51), -, (Ti4m, tiem). This is
a fundamental statement that expresses the fermion behaviour of electrons in an especially
compact way. The inequality (8.2) can be of course applied repeatedly and the points
(ri,t1), ..., (Piym, tiem) can be arbitrarily interchanged to obtain even more inequalities.
We will write a few examples for illustration:

¢ < a Gl (8.18)
G, <6t G (8.19)
G54 <GP G (8.20)

G 5567 < GG, GE) (8.21)

Gl p<aVay) - a. (8.22)

For example, Eq. (8.22) expresses the fact that that the probability that at each of the k
space-time points we find an electron cannot exceed the product of the probabilities of
finding an electron at the individual points.

As we have seen, the case of equality in Eq. (8.2) corresponds to the situation when
I''j=0foralli=1,...,land j =1+1,...,l +m. Let find out what these conditions
really mean. First, we recall the definition of the complex degree of coherence given in

Chap. (6),

(8.23)

An analogous physical quantity has been known in optics for a long time that expresses
the mutual coherence of the electromagnetic field at two space-time points. Similarly, v;;
expresses the mutual coherence of the electron field at the space-time points (7;, ;) and
(r;,t;) and contains information about both the temporal and spatial coherence of the field.
From the non-negative definiteness of the matrix I' it follows that I';;I";; < I';I';;, which
yields that |y;;| < 1 for all 4,j. The case |y;;| = 1 corresponds to the complete mutual
coherence of the electron field at the points (r;,t;), (r;,t;), while |y;;| = 0 corresponds to
the complete incoherence. So for |v;;| = 0, even if we know the properties of the field at
the point r; at the time ¢; completely, we cannot say anything about the field at the point
r; at the time ¢;. On the other hand, if |v;;| > 0, some properties of the field at the point
r; at the time ¢; can be determined from the knowledge of the electron field at the point
r; at the time ;.

Thus, the conditions I';; =0 foralli =1,...,land j =1+1,...,l+m express the fact
that the electron field at any point of the first set S; = {(r, ;)| = 1,...,1} is incoherent
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with the field at any point of the second set S,, = {(7;,t;)|j = (+1,...,l+m}. The equality
in (8.2) is then very reasonable: if the fields at the points corresponding to the both
sets Sy, S;, are mutually completely incoherent, the probability of finding an electron at
each of the [ + m points factorizes into the product of the probabilities corresponding to
the individual sets. On the other hand, if there exists at least one pair of points (r;,¢;) € S,
(rj,t;) € Sy, for which «;; is nonzero, then the inequality (8.2) is sharp. We can say that
the electrons “do not like to stay together” in some sense. Indeed, if |v;;| > 0 holds, then
the electron field at the point (r;, ;) “knows” about the field at the point (r;,¢;) and if
there is an electron at (r;,;), another electron does not “like” very much to be at (r;, ;).
This “repulsion”, or better said, “exchange repulsion”, leads then to the sharp inequality
i Ly
Tji Ty

zero and therefore the matrix I' is positive-semidefinite. The correlation function Gﬁ””}im,
which is the determinant of I', turns then into zero. This means that if |y,;| = 1, no
two electrons can be found at the space-time points (r;, ¢;) and (7}, t;) simultaneously and
therefore of course no I + m electrons can be found at the points (r1,t1),..., (Tirm, tism)
that include also the points (r;, ;) and (r;,t;).

Let us compare this result with the Pauli principle: the Pauli principle prohibits two
fermions to be in the same quantum state, while our result prohibits two electrons to
be at space-time points (r;,¢;) and (r;,¢;) for which |y;;/ = 1. The similarity of both
the statements is obvious.

is equal to

in (8.2). In the extreme case when |v,;| = 1, the subdeterminant ‘

8.3 Correlation function corresponding to new cre-
ation and annihilation operators

Consider now a general unitary transformation that transforms the creation and annihila-
tion operators 1/}1, ey w,i and 11, ...,y into new ones d){, cee ¢’1T€ and ¢q,...,¢r. We can
write this transformation with the help of a unitary matrix V' = (v;;) of order £ as follows:

~ k ~ ~
¢;r = Z Uz‘jw;[; ¢ = Z Ufj%’- (8.24)
=1

In this way, a set of k new states |o;) = ¢! [vac) is defined as a linear combination of
the states |r;,¢;). We may wonder now, what is the correlation function

GO = (3B - ) (8.25)

that expresses the probability of finding an electron in each of the new states |«;). After
we have passed the calculation of G®)| it will be no problem to evaluate G®'. We just
have to realize that relations analogous to (4.11) and (4.12) hold between the operators
i, & and a(p),at(p), which can be obtained by substituting Egs. (4.11) and (4.12) into
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Eq. (8.24):
i = vty =3 v > Ki(p) alp) = 3 Ki(p) alp) (8.26)

(we write the formula for ¢; only; the Hermite conjugate of Eq. (8.26) holds for ¢}). Now we
can repeat the calculation from Chapter 6 completely, the only difference being the prime
over K (p). The result will be therefore according to Eq. (6.28)

r, T, ... I,
, ) r,, Th, ... I
G =detl"=| * 7 2 (8.27)
I The oo Ty
where
Iy, = (dlé;) (8.28)

is the cross-correlation function corresponding to the states |;) and |o;).

Let us examine the matrix I in more detail. Substituting the operators (8.24) into
Eq. (8.28), we get

iy k PO . ko k . ko k
F;j - <¢I¢J> = <szl¢; Z v;mwm> = Z Z Vil <¢[T¢m> U;m = Z Z vilFlmv;‘m.
=1 m=1

=1 m=1 1=1 m=1 (8.29)

This equation shows that it holds I = Vf‘VT, that is, the matrix [’ can be obtained from
r by a unitary transformation V. This has an interesting consequence: The determinants
of the matrices I and f‘, and hence also the two correlation functions of the kth order
G®)' G®) are equal to each other,

GW = (o] Gk dn- ) = (Pl i) = GW. (8.30)

At this place we compare the situation with the case of bosons. According to Mandel
and Wolf 1], p. 428, Eq. (8.4-2b), the k-photon correlation function for thermal light has
the form

0% = S (B Fon) (F B Y-+ (B B (8:31)
PeP

where FIT and F are the photon creation and annihilation operators and P denotes again

a permutation of the numbers 1,..., k. Comparing this with the electron correlation func-
tion written now in a similar manner
GM =" sign(P) (¢fvpa ) (Pl ) - (Pldbpw ) . (8.32)

PeP
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we see that the photon correlation function has a very similar structure as the electron one,
but with one fundamental difference — in the case of photons, all the terms enter the sum
with a positive sign, irrespective to what the sign of the corresponding permutation is,
while in the case of electrons the terms enter the sum with different signs according to the
sign of the corresponding permutation. Now we can make the same procedure for photons
as described above for electrons, i.e., define a new set of field operators RI, cee R,i and
Rl, cen Ry using a unitary transformation analogous to (8.24). Then the new correlation
function (R} --- R} Ry --- R;) will again have the form analogous to (8.31), now of course
with new cross-correlation functions (R Rp(i)>. However, this new correlation function
is no more equal to the original one (8.31). This was true only for electrons because of
the nice properties of determinants, namely, the property of invariance under a unitary
transformation. This invariance is possible because the various products enter the sum
with various signs, which does not happen for photons.

Thus we have found an invariant of electron correlation functions that is no invariant
in the case of photons. This seems to be one of the few things in which the electrons can
be considered to be more interesting than photons from the theoretical point of view.

8.4 Modes of the field at the detectors

Now, let us choose the coefficients v;; in such a way that the matrix I" is diagonal.
Then the correlation function G*)" corresponding to the new states \a;) reduces simply to
the product of the one-electron correlation functions:

Gl =det(T) =Ty, - Ty = GH -6 (8:33)

This means, however, that the events of finding an electron at the different states |«;) are
totally independent, or, in other words, that the field at the different states |c;) is mutually
completely incoherent. In this way, we have found some “modes” of the correlation func-
tion. Indeed, each state |o;) is a linear combination of the states |r;,¢;) and the field at
different states |r;,t;), |7, %) can be mutually coherent, but the field in any two different
new states |a;) |a;) is now incoherent. This situation is very similar to the problem of
coupled harmonic oscillators, where the oscillations of the individual oscillators are also
coupled but the different modes no more.

It would be very interesting to see what would happen if the spatial density of the points
(r;,t;) went to infinity. I think that then the states |o;) would become identical with
the modes |p) of the field (see Chapter 5) and that the diagonal elements of the matrix I
would express the “intensity” of these modes in the electron field.



Chapter 9

Two-electron correlation function for
field-emission electrons

After we have calculated the correlation function of any order for chaotic electrons and de-
rived important inequalities holding for correlation functions of different orders, it is time
to concentrate on more practical problems related to experiment. From the experimental
point of view, the three-, four- and more-electron correlation functions are of no use be-
cause nowadays it is still completely impossible to make any measurements of them. Then
the one- and two-electron correlation functions remain. The one-electron correlation func-
tion is simply the probability of finding an electron at a certain place and is in fact measured
daily in electron interferometers. This function provides no information about the correla-
tional properties of the electrons arising from their indistinguishableness. Therefore it will
be reasonable to concentrate on the two-electron correlation function in the following and
to describe its basic properties for an experimental setup with a field-emission source.

Substituting k¥ = 2 into Eq. (6.28) and to Eq. (6.30), we obtain the following expressions
for the two-electron correlation function at the points (rq,t;), (7, t2):

G =TTy — Tpaly; = T Too(1 — |712)%). (9.1)

It is very useful to define the normalized two-electron correlation function by dividing G(é)
by the product of both the one-electron correlation functions GEI) =Ty

(2) _ G(122) ~ Dyylgg — Tiol'yy

2 2
g5 = — =1 ) 9.2
2 G(ll)Gél) 119 72| (92)

This function characterizes the correlational properties of the electron field in a very con-
venient way. If we had completely uncorrelated particles, the probability of detecting one
of them at the point (rq,¢;) and another one at the point (73,%y) would factorize into
the product of the individual probabilities. Therefore the normalized two-particle corre-
lation function would be equal to unity for any configuration of the two points (rq,t;)
and (ry,19). So we see that the difference between the normalized one-electron correlation
function and unity is a measure of the electron correlations. This difference is negative,

20
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which corresponds to fermionic nature of electrons, and equal to —|y15|?, suggesting that
the correlation grows with the growing mutual coherence of the electron field at the points
(7'1, tl) and (’I"Q, tg)

To evaluate the correlation function gg), we will need according to Eq. (9.2) the cross-
correlation function I'yy that can be calculated with the help of Eq. (6.27). To be able to
perform the summation over all the modes in this equation, we must first specify how these
modes in fact look like.

9.1 Modes of the field-emission electron field

Until now, we have not specified very much what we exactly mean by the modes |p),
even though we made a few assumptions about them only. We assumed that the modes
form an orthonormal and complete system in the one-electron Hilbert space, that different
modes are mutually uncorrelated and that the set of the modes is discrete.

The first two assumptions were important for the calculation performed in Chapter 6.
Indeed, during the calculation we used the anticommutation relations (4.13) for the creation
and annihilation operators a'(p), a(p) of the modes p. The first relation in (4.13) is closely
connected with the orthonormality of the set of the modes. In fact, it generally holds

a'(p)a’) + a(p)a' (p) = (v'|p), (9.3)

so if the different modes are not orthogonal, the first anticommutation relation in (4.13)
does not hold. At the same time, we used the relations (4.11) and (4.12) to express the field
operators W(fr‘, t) 1&(7‘, t) in terms of af(p), a(p). If this should be possible, it is necessary
that the states |p) form a complete set. The third important statement was that different
modes are mutually uncorrelated. The fourth assumption that the set of modes p is discrete
was used only during the calculation and can be completely relaxed (this has been already
explained at the argumentation leading to the approximation (6.8)). Physically there is
totally no problem in going over to a continuous set of modes.

We would like to emphasize that our assumptions are not fundamental; in principle,
we could describe the electron field using any modes. But, because of their key role in
the performed calculation, we have to take the first three of them into account when
applying our results on a specific physical situation.

A typical set of modes satisfying the first two assumptions is the set of all momenta
eigenstates. From the theoretical point of view, this situation is interesting. However,
in an electron interference experiment with a field-emission source we hardly deal with
plane-wave electron states, but rather with some kind of spherical-wave states. Therefore
we will not concentrate on the momenta eigenstates but will look for the set of modes that
correspond better to the physical reality.

To describe the basic correlation properties of a field-emission source, we will use the fol-
lowing simple model of the source: we will to suppose that each point of its surface emits
spherical waves, that emissions from different points are independent of each other, and that
the energy distribution of the emitted electrons is the same for all the points of the source.
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This suggests that monochromatic spherical waves with their origin at the source surface
could the modes we are looking for. However, the first and second assumptions mentioned
above are not satisfied for them. Even though two spherical waves with different energies
are always orthogonal, two waves with equal energies issuing from different points need not
to be. The assumption about the completeness is even more corrupted: it is completely
impossible to express an arbitrary state using just such a limited set of spherical waves.
Fortunately, both of these problems can be solved, which we will show now.

We start with the first one. The solution is similar to the to the approximation (6.8).
Very loosely speaking, there are relatively few pairs of plane waves that are not mutually
orthogonal with respect to the number of pairs that are orthogonal. More precisely said,
if a measure is defined on the set of the pairs of the plane waves that is finite for the set
of all orthogonal pairs, then the measure of the set of all non-orthogonal pairs is equal to
zero. In this way, the fact that some waves are not mutually orthogonal does not influence
the result and we can apply the calculations from Chap. 6 also to the case of spherical
waves. However, we give up that this argumentation is very heuristic and would deserve
a strict mathematical proof. This may come in future, but for now we believe that it is
correct.

The second problem with the assumption about the completeness can be solved quite
easily. For the field operators Yt (r,t) and ¢ (r, ) the relations (4.11) and (4.12) hold. We
can define the operators ¢f(r, 1) and ¢(r, t) by relations similar to (4.11), (4.12), but omit
some modes in the summation. This means that we do not sum over the complete set of
the modes p, but over some subset P only:

oi(r,t) =3 K*(r.tlp)al(p). =2 K(r,tlp)a(p). (9-4)

peEP peEP

Then it is clear that if all the occupied modes of the electron field belong to the subset
P, the expectation value of any term composed of the operators QAST(r,t), ds(r,t) will be
the same as that of the same term composed of W(r t), w(r t). Thus, concerning the
correlation functions there is no difference between ¢f(r, ), ¢(r,t) and W( t), (r.t), as
long as we have included all the modes produced by the source into the sums in Eq. (9.4).
This means also that by calculating the correlation functions using Eq. (6.26) or Eq. (6.27),
the summation over the incomplete set of modes only, that is, over all the modes produced
by the source, is completely correct.

So, we can consider spherical waves as the modes of the electron field. Each such wave
|R, E) can be described by the following two parameters: the origin R from which it
propagates and the energy E. However, because of the simplification of notation, it will be
more useful to use the physical quantity p = v/2mFE instead of energy'. We will call this
quantity as “momentum”, even if it is not a momentum in the ordinary sense. This can be
justified by the fact that in a large distance from the source there is not much difference
between a spherical wave with energy p?/(2m) and a plane wave with the magnitude of
momentum equal to p. We will write the propagator corresponding to the spherical wave

Iplease do not confuse this p with the notation of the modes of the field!
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with momentum p coming from the point R as follows,
2

c i P
) exp [h (p’r' - R| - 2mt>] : (9.5)

where ¢ is a constant that is not important to us.

In our situation the summation over all modes ¢ of the field that appears in Eq. (6.26)
or (6.27) is equivalent to integration over all the momenta p of the spectrum and over all
the points R of the source. As the energy distribution is the same for all the points of
the source, the mode spectrum function f(g) factorizes into the product of the normalized
momentum distribution F'(p) and the source emission intensity .J(R):

K(r,t|R,p) =

f@)= 7 JR)F (). (9.6

Here the total source emission intensity Z appears in the denominator to ensure the proper
normalization of the probability distribution f(q).

Using the formula (6.27) for the cross-correlation function Ty = (bt (11, t1) 1h(ra, t2))
at the points (r1,%1), (r2,%2), Eq. (9.6) and the spherical wave propagator (9.5), we can
write the following expression for I'ys:

Nlc|> o F(p)J(R)
r :—/ d / %
12 o PL Y r “Rlr, - R|

. 2

X exp {% [(rg ~R|-|r —R)p-— ;’—m(tQ - tl)] } . (9.7)
The second integral runs over the volume V' of the source. As in our model we assumed
that the source emits only from its surface, the intensity distribution J(R) should be
understood to be nonzero on the surface of the source only where it has a Dirac -function-
like singularity. This will be evident from an example that comes soon.

For the following calculations we will make a few approximations, all of which are com-
pletely acceptable for practical applications. First, it is clear that the size of the source
that is a fraction of a micrometer is by many orders less than the distances rq, 7o between
the source and the detectors that are several decimeters. If we place the origin of coordi-
nates to the center of the field emission tip, we can therefore neglect R in the denominator
of Eq. (9.7) with respect to 71 and 7, and take the whole fraction out of the integral. We
cannot of course make such a rough approximation in the exponent of Eq. (9.7) because
even small changes of R can cause large changes of the exponent because of an extremely
small wavelength of the electrons. However, an approximation can be still made. For this
reason we decompose the vector u = r — R into a sum of two vectors: the first one v
parallel and the second one v_ orthogonal to 7. If R = |R| < |r| = r, the magnitude
of v_ will be many orders less than the magnitude of v| and because the two vectors are
orthogonal to each other, the magnitude of r; — R will be determined by the magnitude
of v only (up to the first order in R/r). As it holds

r'_ (r - @> r (9.8)

(r— R)~

v =
r

r r r
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we can write

rR

r—R|= |y =1 — - (9.9)
The exponent in Eq. (9.7) then becomes
= p(7“2—7”1)——(tQ—tl)—p<———>R = |pl = 5=7—puR]|,
h 2m ry T h 2m (9.10)

where we have denoted 7 =ty —t1, | = ro—ry, u = 7o /ro—11/r1. With the help Eq. (9.10),
we can write Eq. (9.7) in the following way:

]\/v|c|2 o 1 p2
[y = F(p) A [ - — d 9.11
12 7|1 (p) A(u,p) exp [h <p 2m7' Ds ( )
where the function A(u,p) is defined as
1 :
A(u,p) = —/ J(R) exp (—lpuR) dv. (9.12)
v h

To evaluate the complex degree of coherence ;5 of the electron field at the points (rq, ;)

and (rq,t2), we will need also the one-electron correlation functions G\ and GY. Their
evaluation is very simple: in analogy with Eq. (9.7) we get now

N|c|2 (R)  Nle
G =1, = / / dV — 9.13
i _ R\? r? (9.13)

and the complex degree of coherence then becomes with the help of Egs. (9.11) and (9.13)

['ys /°° i p2
-2 _ [ FpA I— 2 | dp. 9.14
M= = (p) A(u,p) exp [ 7 (p 5T | P (9.14)

The equation (9.13) shows that the one-electron correlation functions are inversely propor-
tional to the square of the distance from the source, which could be expected.

9.2 Angular coherence function

From Eq. (9.12) it is clear that the function A(u,p) depends on u and does not depend on
the distances of the detectors from the source and times of measurement at the detectors.
Let us see what is in fact the physical meaning of w. From the cosine theorem applied
on the triangle with one vertex at the origin of coordinates and the other two ones at

the detectors it follows that |u| = /2(1 — cos p) = 2sin(p/2), where ¢ is the angle between
the vectors r; and r,. For small angles it holds approximately |u| = ¢. The direction

of the vector u is perpendicular to the axis of the angle ¢. This suggests that A(u,p)
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describes the angular coherence properties of the electron field and therefore we will call it
the angular coherence function.

The equation (9.12) shows that the function A(wu,p) is almost the three-dimensional
Fourier transform of the intensity of radiation J(R), the only difference being that the in-
tegration variable R runs only over the source volume. If we define, however, the intensity
of radiation also outside the source to be equal to zero, A(u,p) becomes a true Fourier
transform of the intensity of radiation of the source. In this way we have derived the far-
zone form of the van Cittert — Zernike theorem for electrons that is known in classical as
well as in quantum optics ([1], pages 188 — 191). This theorem states that the angular
part of the cross-correlation function is the normalized Fourier transform of the intensity
distribution of the source, which is precisely Eq. (9.12).

9.2.1 Gaussian distribution of the source intensity

To illustrate the properties of the angular coherence function, we will calculate it now
for a source radiating from the xy-plane with a two-dimensional Gaussian distribution of
emission intensity. The function J(R) will be then

I 1,2 y2
_ IR o _ 1
J(R) 27D, D, eXp( 2D? 2D§> 2(2) (9.15)

Here D, and D, are characteristic sizes of the source in the x and y directions and the pres-
ence of the Dirac delta-function reflects the fact that the source radiates from a two-
dimensional region only. The angular coherence function A(u,p) becomes then according
to Eq. (9.12)

A(u,p) = _ 7 70 706(,2)exp —x—Q— y—2+i£(umx+u y+u,z)| dedydz
T mDiDy ST 2Dy 2D; 'k ’ (9.16)

The evaluation of the triple integral is not difficult and yields

A(u,p) = exp l—% - %1 , (9.17)

where ®; = i/(D;p) are coherence angles corresponding to the 2 and y directions. The an-
gular coherence function A(w,p) is hence also Gaussian and its width in a particular di-
rection (x or y) is inversely proportional to the source extension in the same direction. For
the case of a linear source we put Dy = 0 in Eq. (9.17). Then ®; — oo and the angular
coherence function becomes

A(u) = exp l— (;g);] : (9.18)

that is, depends no more on u,. This means that even if the two detectors are placed very
far from each other in the y direction, the angular coherence remains preserved.
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The equation (9.17) shows that the angular coherence increases with a decreasing size
of the source. This is not a property of the Gaussian intensity distribution only. Tt
holds generally for pairs of functions that are Fourier transforms of one another that their
“widths” are inversely proportional to each other with the proportionality factor of order of
unity. If D, |tmax| and A = 27h/p denote the characteristic size of the source, the maximal
|u| for which the function A(w) does not vanish and the wavelength of the electrons,
respectively, it holds approximately

P|Umax| D

2rh A
5 ~ 2 — |Umax| & =

DD (9.19)
The function A therefore vanishes for |@max| > A/D which results in nullifying of the cross
correlation function and thus loss of coherence at the points (r1,¢) and (7g,t). If |tmax|
is small, it can be identified with the coherence angle. Eq. (9.19) then shows that the co-
herence angle of a source with a characteristic size D is equal to \/D. This corresponds
again very well to the analogous situation in optics where a similar result is obtained.

As it is clear from Eqs. (9.12) and (9.19), the coherence angle and the angular co-
herence function depend on the momentum p of the electrons. For quasi-monochromatic
electrons, however, this dependence can be usually neglected because of a narrow width
d of the spectral function F(p). To show it, let us see how much the term puR/h in
the exponent of Eq. (9.12) changes with p for a given w and R. From the definition of
u it follows that |u| < 2, but from the experimental point of view, |u| is limited by the
emission angle of the source which is about a tenth of a radian. At the same time, R is
limited by the characteristic size D of the source. Therefore

puR 0.16D D
‘A( - >‘< TV (9.20)
holds, where we have denoted I. = h/§ is the coherence length of the electrons. For
coherence length of about 60 nm (this corresponds to energy 2 keV and energy bandwidth
0.3 V) and the source size D of about 50 nanometers, we see that the change of the term
in the exponent of Eq. (9.12) is small compared to unity. This must then hold also for the
whole angular coherence function, which will be used in the following.

9.3 Temporal and longitudinal coherence function

Now we come back to Eq. (9.11). Using the fact that the dependence of A(u,p) on p
can be neglected for quasi-monochromatic electrons, we can write the complex degree of
coherence simply as a product

Y2 = A(w, po) L(I,7), (9.21)

where

r.r) = [ Fp) e {% llp _ % T] } dp. (9.22)
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The function L(I, 7) depends on the distances of the detectors from the source and the times
of the measurement and does not depend on the directions from the source to the detectors.
This means that it describes the longitudinally-temporal coherence properties of the elec-
tron field, which is the reason why we will call it the temporal and longitudinal coherence
function.

With the help of Eqgs. (9.2) and (9.21), the normalized two-electron correlation function
can be finally expressed as

9% = g (w, po, 1, 7) = 1 — |71l = 1 = [A(w, po)|? |L(1, 7) % (9.23)

9.4 Antibunching — the basic property of two-electron
correlations

From Eq. (9.23) we see that if A(u,py) = 0, that is, if the detectors are placed outside
the coherence angle of the source, the normalized two-electron correlation function will
be equal to unity for any 7 and [. This means that the electrons come to the detectors
completely uncorrelated. This result can be expected.

To investigate the influence of the longitudinal and temporal coherence of the electron
field on the two-electron correlation function, we will suppose now that both the detectors
are situated well within the coherence angle of the source. This means that the square of
the modulus |A(u)|? of the angular coherence function is equal to unity and the coherence
properties of the field at the two detectors are determined purely by the longitudinal and
temporal coherence function L(I, 7). Then the normalized two-electron correlation function
becomes according to Egs. (9.22) and (9.23)

CF o 2y
exp < — - —T
/0 (p)exp 7 |Ip = 5~ p
This equation shows that if both [ and 7 are zero, the correlation function is also equal
to zero because of the normalization of the function F'(p). This means that if the two
detectors are equally distant from the source, it is impossible to detect an electron at both

of them simultaneously. For the case that both the detectors are located at the same place,
this statement is equivalent to the Pauli principle. However, for gf)

2

gD ) =1 (9.24)

5 to be equal to zero it
is not necessary that the detectors are located at the same place. The equal distance from
the source (of course together with the angular coherence condition) is sufficient because
of the spherical-wave character of the the electron field emitted by the source. To see other
properties of the correlation function (9.24), we will use an interesting analogy with a wave
packet.

9.4.1 Analogy with a wave packet

Consider for a moment a single quantum particle with the mass m same as the electron
(e.g. again an electron) and with the wave function a(p) in the momentum representation.
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Then the coordinate wave function in the Schréodinger representation has the form

2mh 2m

Y1) = — Z a(p)exp[iﬁ (a:p—ﬁt)] ap (9.25)

and the probability density of finding the particle at the point x is equal to

e UO otyexw | (o0 21) | ay

oo

2

(9.26)

If we compare now this equation with the second term on the right-hand side of Eq. (9.24)
(this is the term |y13|?), we see a strong similarity. If we could make the function s(p) equal
to F(p), this analogy would be complete and the value by which the normalized correlation
function 9522) differs from unity would be proportional to the probability density of finding
the particle at the point z at the time ¢. We should not forget, however, that the func-
tion F(p) expresses the probability that an electron in our system has the momentum p
while the function a(p) is the probability amplitude that the particle has the momentum
p, so the functions F(p) and a(p) have different physical meaning as well as dimensions.
Nevertheless, it is possible to imagine a particle with the momentum wave function a(p)
proportional to the electron momentum distribution F'(p). Then the similarity between
|712/% and |¢)(x, t)|? can be very helpful for understanding the properties of the two-electron
correlation function.

It is known that if the wave function a(p) is real, then the wave packet corresponding
to this wave function is localized around the point x = 0 at the time t = 0. As the function
F(p) which corresponds to a(p) is real, a similar statement holds also for the function
|712/> = |7(I,7)|*. This has an important consequence: for [ = 0, the function |y(I, 7)|?
will be nonzero around the point 7 = 0 (i.e., when t; & t3), but for large 7 it will be
equal to zero. Therefore the correlation function g%) will be reduced for t; ~ 5, reach its
minimum for ¢; = ¢, and converge to unity for large time differences |ty — ¢;|. This means
that it is less likely to detect electrons at the two detectors short after one another than
to detect them long after one another. We could also say that the electrons avoid coming
to the detectors in pairs or groups, or “bunches”. This effect is called antibunching and is
a counterpart of bunching of chaotic photons [22, 23].

If the wave packet (9.25) is quasi-monochromatic, which means that the function a(p)
has a narrow peak around the point py, it has another interesting property: it moves
as a whole with the group velocity v = po/m, changing its shape only a little. From
the analogy we can thus expect that if the electrons are quasi-monochromatic, then also
the correlation function g%) will “move” in time 7 along the axis [ with the velocity v =
po/m 2. So we can say that a longitudinal shift / of the detectors is equivalent to a temporal
shift 7 = [/v of the times of measurement. So, similarly as it is impossible to detect two
electrons at the two detectors simultaneously if [ = 0, for [ > 0 it is impossible to detect

2this means simply that gg can be approximately expressed as a function of the variable [ — vr
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an electron at the first detector at some moment of time and then detect an electron at
the second detector /v seconds later.

Even if the wave packet is quasi-monochromatic, its form changes a little with time —
we say that it spreads. The spreading is slower for more monochromatic packets, but takes
place always. It means that the length or extension of the packet becomes larger and larger
during the time while its maximal height reduces at the same time (these two effects must
take place simultaneously because the integral of |¢)(x, t)|? over x remains equal to unity all
the time). We can expect the same behaviour of our correlation function. Thus, for large
time difference 7 of measurement on the detectors the term |y;2/? will not reach the value
of unity for any detector configuration and therefore the correlation function g%) = 0 will
never reach the zero value. It will have only a minimum for [ = v7. We can put it also
in another way: if the detectors are placed in very different distances from the source (I
is large), then the probability of detecting one electron at the first detector and another
electron at the second detector 7 seconds later will be nonzero for any 7. On the other
hand, the interval of the time differences 7 for which the correlation function g%) =01is
reduced considerably will become longer than they were for [ = 0.

9.4.2 Gaussian momentum distribution

To illustrate that the results obtained heuristically from the analogy between the two-
electron correlation function and the coordinate probability distribution of a wave-packet
state, we will consider now a specific momentum distribution. So, let the function F(p)
have the Gaussian form with the mean value py and dispersion §%:

o)

1
= 75rs exp l— 552 (9.27)

F(p)

The temporal and longitudinal coherence function then becomes according to Eq. (9.22)

1 00 _ 2 i 2
\/%6/0 exp {—L 262200) + 7 [lp - f—mT]} dp. (9.28)

If the electrons are quasi-monochromatic, i.e., if § < pg, we can extend the lower bound of
the integral into minus infinity. The integral is then not difficult to solve and yields

L(l,7) =

V1- i5127'/(mh) P l% (lpo - 1%) - 2%21/(2[2::2;71] ' (9.29)

L(,1)=

When we divide the second term in the exponent into its real and imaginary parts, we can
easily compute the correlation function gg =g, 7):

1 (I —vr)?

A7) =1— AZ=1-= exp |— .
9P (L) =1-|LLT)P =1 St 007 (meme) pl ﬁ2/52+5272/m2] (9.30)
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This equation shows that the minimal values of the correlation function ¢(* (I, 7) are sit-
uated around the point 7 = [/v, which corresponds to the “motion” of the correlation
function. For large [ the square root in Eq. (9.30) is significantly larger than unity around
this point and therefore the minimal value of g%) is no more zero. At the same time,
the term 6272 /m? in the denominator of the exponent causes from the same reason the in-
crease of the width of the negative peak of ¢(®(I,7). The figures (9.1) and (9.2) show this

behaviour clearly.

0.8 -

0.4 -

0.2 |

0
-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

Figure 9.1: The normalized two-electron correlation function ¢(?)(I,7) for I = 0 as a function
of the time difference 7 for 2 keV electrons with the energy bandwidth 0.3 eV and the Gaussian
momentum distribution. The time 7 is expressed in picoseconds. The width of the peak shows
an extremely short coherence time of the field-emission electrons of about 10~ sec.

9.5 Estimating the spatial and temporal extent of two-
electron correlations

Let py and 6% denote the mean value and dispersion of the momentum distribution F(p),
respectively. Then we can find a normalized function h(u) centered around the point u = 0
with the unity dispersion such that it holds

Fp) = % h (p _pﬂ) | (9.31)
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Figure 9.2: The normalized two-electron correlation function ¢(®(I,7) for | = 1 centimeter as
a function of the time difference 7 expressed in picoseconds. The other parameters are same as
in Fig. 9.1. The spreading of the correlation function as well as the time shift of the minimum
are obvious.

Now, let us express the temporal and longitudinal coherence function L(l,7) for 7 = 0
according to Eq. (9.22) with the help of the function A(u):

L(1,0) = %/OOO h (p ;p0> exp (%) dp. (9.32)

Using the substitution u = (p — pg)/d, we can rewrite the integral as

L(1,0) = exp (”%) [ hwyesp (%) du. (9.33)

— 00

In fact, the lower limit of the integral should be —py /6. However, if we define the function
h(u) also for u < —pg/0 to be equal to zero, we can extent the lower limit to minus infinity.
If we denote the integral as H(l0/h), the normalized correlation function becomes

g?(1,0)=1- ‘H (%)

We see that it is possible to express g(?(I,0) as a function of /6/h. This means that if we
increase d while keeping the form of the function h(u), the correlation function ¢ (1,0)

2

(9.34)
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shrinks in the [ direction. The negative peak of g(®(l,0) also shrinks and the correlation
function is approaching unity as for uncorrelated particles. On the other hand, the width
of the peak increases with reducing 4. This can be expected: the more monochromatic are
the electrons, the larger is the spatial extent where the equal-time correlations reach.

It is even possible to estimate the width of the peak. As the function h(u) has a unity
dispersion, the dispersion of its Fourier transform H(l§/h) will be also of order of unity?.
Therefore the width of the function L(l,0) will be of order of i/d, which holds also for
|L(1,0)|? and for the width of the negative peak of ¢‘®(1,0). On the other hand, %/d is
nothing else than the coherence length /. of the electrons. This means that the longitudinal
extent of equal-time correlations in the electron field is given by the coherence length of
the electrons, which is an important result.

Similarly, if we fix now [ at the zero value and consider g(Q)(O,T) as a function of 7,
we arrive at the result that the negative peak in the correlation function has the width
approximately equal to T, = mh/(pod). This time T, is obtained from the coherence length
l. by dividing by the mean velocity v = py/m of the electrons and can be identified with
the coherence time of the electron field. This is another important result: if one electron
comes to a detector, the probability that another one comes will be then reduced during
the coherence time.

For typical field-emission electrons with the energy 2 keV and energy bandwidth of
about 0.3 electronvolts, the momentum bandwidth is 1.7 x 1072” kgm/s. The square
root of the momentum dispersion is then equal to § = 5.5 x 1072® kgm/s, the coherence
length 200 nm and the coherence time 107!* s. The coherence time can be also expressed
as T, = h/og, where 0% is the energy dispersion. This is equivalent with the formula
T. = mh/(pod), however, because o/ = po/m.

9.6 Time integral of the complex degree of coherence
as a measure of the two-electron correlation

As we have seen, it is the difference of the normalized two-electron correlation function and
unity (which is the similar correlation function for uncorrelated particles) what expresses
the correlational properties of the electrons. However, as has been mentioned in Chap. 2,
the resolution time of the coincidence experiment is about 107 !° s, which makes it impos-
sible to measure the correlation function g%) itself as a function of 7. In fact, the measured
statistics of time differences between the starting and stopping pulse is “blurred” com-
pared to the correlation function. The result is that instead of a nice deep minimum
with the width equal to the coherence time we observe a very shallow minimum with
the width of the resolution time, and the area that is missing in the blurred minimum is
the same as the area missing in the correlation function. Therefore it is reasonable to define
the “antibunching intensity” (unfortunately, we were not able to find a better name for

this quantity) as the 7-integral of |y(l, 7)|? over the experimental resolution time 7,. This

3This holds especially if the function h(u) has a nice single peak. For “wild” functions this may not be
true, but we suppose that the energy spectrum of the electrons is well-behaved.
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integral is the measure of the two-electron correlational properties of the electron field that
can be experimentally observed. However, as the interval where |y(I,7)|? is significantly
different from zero is very short compared to the resolution time 7, we can integrate over
the whole time axis instead, so that

oo

5= / Iy (1, 7)|? dr = / L(, 72 dr (9.35)

— 00

(we still suppose that the angular coherence condition |A(w, pg)|? = 1 is satisfied).
Let us try to express S in terms of the momentum distribution F'(p) now. Substituting
Eq. (9.22) into Eq. (9.35), we get for S the following triple integral:

SzZ dT/UOO dp/ooo qu(p)F(q)eXp{ih [l(q—p)—MT”-

2m (9.36)
Interchanging formally the order of integration and using the fact that
o0 S (2 2 onh
/ exp{—%%T} dr = 4rhm §(q*> — p*) = meé(q—p) (9.37)

(we used the fact that p, q are both positive), the integral (9.36) becomes

S:Whm/ooo/ooo%F(p)F(Q)eXp{ih[l(q_p)]}(s(q_p)dpdq:Whm/OOO%[F(p)]Q(g%‘S)

This equation shows an important result: the antibunching intensity S does not depend on
the longitudinal separation of the detectors. This reflects the fact we have already pointed
out — the reducing of the height of the function |y(l,7)]* takes place together with its
spreading, similarly as for [¢)(z,#)|? in the case of the wave packet. Therefore it does not
matter if the two detectors are placed equally far from the source or not — the signal
measured in the experiment remains preserved. This can make the measurement a little
bit simpler in the way that it is not necessary to place both the detectors precisely into one
plane perpendicular to the optical axis of the experiment. Preserving of the antibunching
intensity can be seen in figures 9.1 and 9.2.

Using the function h(u) defined above, we can express the antibunching intensity with
the help of the square root of the momentum dispersion ¢ in the following way:

2mhm [ 1 2mhm [
5= =5 /m g P du s T2 [ [h(w)? du (9.39)
We have taken advantage of the quasi-monochromaticity of the electrons again. Eq. (9.39)
shows that the antibunching intensity is inversely proportional 6. As the function h(p)
has a unity dispersion, the integral [*_[h(u)]*du is also of order of unity. Then we can
conclude that the antibunching intensity S is equal to the coherence time T, = mh/(pod)
up to a multiplicative constant of order of unity.
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9.7 Feasibility of observing electron antibunching

The fact that the coherence time of the field-emission electrons is as short as 10~ !* s makes
any correlation measurement extremely difficult. As the resolution time exceeds the coher-
ence time at least by three orders of magnitude, the relative signal even in the optimal case
cannot exceed the value of 1/1000. Therefore a special attention must be paid to many
effects that would be completely unimportant in other types of experiments. Moreover,
in a coincidence experiment it is necessary to measure for a long time to obtain a reliable
statistics of the time differences because the number of counts fluctuates [24, 25].

The situation with electrons in the condensed matter is easier. The temporal tech-
nology enables to make smart structures such as a two-dimensional electron gas in which
the quantum nature of the electrons manifests itself very strongly. It is even possible to
make beam-splitters and similar elements for electrons that are hardly thinkable for free
electrons. Therefore it is no wonder that more-electron correlations have been observed
already several times in the recent few years (see |6, 7, 8, 9]). If we compare this with
the extreme difficulty of observing correlations of electrons in the vacuum, we can ask if it
has any sense at all to make experiments with the free electrons when it is possible to mea-
sure the same correlations in the condensed matter. Indeed, I think that it definitely has
sense. One of the reasons is that even if the electrons in condensed matter behave as free
particles in some aspects, in fact they are quite different from the free electrons. Therefore
we can say that what is observed in the condensed matter are not electron correlations,
but rather quasi-electron correlations, which is a motivation for trying to observe also cor-
relations of true free electrons. Another challenge can be paradoxically the difficulty of
the measurement itself.

I believe that in spite of the problems I have just described, it will be possible to make
a successful experiment demonstrating the fermionic nature of the electrons via electron
antibunching. T also hope that it will be the university in Tiibingen where it will be
managed for the first time.



Chapter 10

Two-electron correlation function in
a real experiment

In the previous chapter we considered a very simple situation where there was just the elec-
tron source and two detectors. In a real experimental setup this configuration would not
be possible. For example, from technical reasons the separation of the detectors that are
supposed to detect individual electrons must be at least a few millimeters. Without a mag-
nifying electrostatic quadrupole it would never be possible to illuminate both the detectors
coherently, that is, to place them within the coherence angle of the source. The usage of
the quadrupoles enlarges the coherently illuminated area by several orders of magnitude
which makes it possible to place both the detectors within it. In the last chapter we also
have not taken the electrostatic field of the source into account. Of course, any electro-
magnetic field (e.g. of the quadrupole or the field-emission tip) acting on the electrons
changes the probability amplitude that an electron comes from the source to the detector,
i.e., the propagator. Therefore a proper analysis of a correlation experiment should include
calculating the electron propagators corresponding to the experimental setup, which is not
the aim of this dissertation, however. Fortunately, even though the electron wavefronts are
deformed under the influence of electromagnetic fields, the coherence time does not change
and after the electrons pass the regions with the field, also the coherence length restores
to its original value. Therefore we cannot expect any drastic changes in the observed phe-
nomena with respect to the results from the previous chapter, and the main properties of
correlation functions will remain preserved. Nevertheless, there is one element that may
cause also considerable changes in the electron correlations — the electrostatic biprism.
As in the experimental setup with the biprism there are two ways how an electron can
come into either detector, interesting interference effects are to be expected. We will try
to describe some of them in the following.

65
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10.1 Correlation function in an electron biprism in-
terferometer

In the experiment that we are going to describe there are basically the following elements:
the electron source, the electron biprism, the Wien filter and two electron detectors. We will
suppose that both the detectors are situated in the interference region of our interferometer,
i.e., in the region where the two partial electron waves overlap and can interfere. Then
there are two classical paths along which an electron can come from the source to any of
the two detectors — it can move either left or right from the biprism filament. Figure 10.1
shows the experimental setup including the paths schematically. As we do not distinguish if
an electron moves left or right in the experiment, the probability amplitude that an electron
in the mode ¢ arrives into either detectors (which is simply the propagator K;(q)) can be
calculated as the sum of the two corresponding amplitudes:

Ki(q) = Kia(q) + Kia(q). (10.1)

So, the propagators K;(p) K;1(p) correspond to the left and right paths from the source
to the sth detector, respectively. They can be generally written in the form

Kiu(q) = Agelon@), (10.2)

where A; and ¢;, is the amplitude and phase of the propagator K;,(p), respectively. As
the amplitude A; is given mainly by the distance between the source and the detector (see
Eq. (9.5)), we can assume that it is the same for both the propagators K;i(¢) and Kjs(q).
The semiclassical approximation can be used successfully for evaluating the phases ;,(q)
because the electron wavelength is by many orders less than the size of any element in
the experiment (the wavelength of 2 keV electrons is about 3 x 107'" meters only). If we
denote the classical path going from the source to the ith detector via the uth path (u
is equal to 1 or 2 for paths left or right from the biprism, respectively, see Fig. 10.1) as
[iu], the phase ¢;,(q) can be then calculated simply as the classical action corresponding
to the path [iu] with the the energy E of the mode ¢, divided by the Planck constant 7.

Now, to evaluate the cross-correlation function we will go back to Eq. (6.27). Using
Eq. (10.1) we obtain

[ = NZf(Q) Ki(gK NZf [K71(9) + Ki5(q)] [K21(q) + Ka2(q)]

= Ty191 + Thioo + Tioor + Tioge,  (10.3)

where

[iugy = NZf (0) K2 (q) = NA1 A2 Y f(q) exp {ipan(q) — wru(q)]}-
q (10.4)

To understand the result (10.3) better, we should realize that the event that two electrons
come from the source to the detectors can happen by one of the following four possibilities
(see figure 10.4):
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source biprism Wien filter detectors

Figure 10.1: Scheme of the electron biprism interferometer with the four paths going from
the source to the detectors 1 and 2. As the electrons are attracted by the positively charged
filament, two classical paths for each detector exist.

1. both electrons take a path left from the biprism,

2. the electron that comes to detector 1 takes a path left from the biprism, and the elec-
tron that comes to detector 2 takes a path right from the biprism

3. the electron that comes to detector 1 takes a path right from the biprism, and the elec-
tron that comes to detector 2 takes a path left from the biprism,

4. both electrons take a path right from the biprism.

The cross-correlation functions corresponding to these four possibilities are evidently I'y91,
1122, 1221, 1299, respectively. As we do not distinguish between the four possibilities in
the experiment, all of them interfere and therefore the total cross-correlation function is
equal to the sum of the cross-correlation functions corresponding to all the possibilities.

The one-electron correlation functions GEI) = I';; can be evaluated easily again using
Eq. (10.1) and Eq. (6.27):

GV =NY o) IKi(@)]P = NY f(a) [ Ki(a) + Kn(q)
= NA2Y" f(g) {1+ cos[pi(q) — wir(@)]}  (10.5)

If we define the complex degree of coherence corresponding to paths [iu] and [jv] as

Yiujo = »_, f(q) exp {i[w;u(q) — vi(q)]}, (10.6)

we can express the one-electron correlation functions, the complex degree of coherence and
the normalized two-electron correlation function with the help of Egs. (10.3) — (10.5) as
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iy = Y1121 + Y122 + Y1221 + Y1222/
12 — 3
4(]_ + Re ’71112)(1 + Re ’)/2122)

(10.8)

and

B |Y1121 + Y1122 + Y1921 + 71222|2
4(1 + Re 71112)(1 + Re ’)/2122)

gfﬁ =1

(10.9)

Here Re denotes the real part of a complex number. The equation (10.7) shows that
the probability of detecting an electron at the ith detector oscillates if the phase of the com-
plex degree of coherence ;1,5 changes. This reflects the existence of interference fringes
in the interference region. If the amplitude of v;1;, is small, which corresponds to a small
angular or longitudinal coherence between the beams going to the ith detector left and
right from the biprism filament, then the oscillations become small — the fringe contrast
reduces.

10.1.1 Antibunching intensity in interferometer

We will calculate now the integral of the square of the absolute value of the complex
degree of coherence |y15]? over 7 in a similar way as we did in the previous chapter. For
simplicity we will suppose that there is a complete angular coherence for any pair of paths
[iu], [jv]. Then we can again use only the longitudinal and temporal coherence function
for evaluating the complex degree of coherence, and, exactly as in the previous chapter,
instead of summation over the modes ¢ use integration over the momentum p. In this way
the antibunching intensity with the help of Eq. (10.8) becomes

o0
I vz + 71122 + Yizo1 + 71222\2 dr

. / S _ 10.10
“%o e 4(1+ Revi112)(1 + Re 72122 ( |

We have taken advantage of the fact that the denominator of the fraction (10.8) does not
depend on 7. For the numerator I of the fraction (10.10) we then get

x 2
I = / Y1121 4 Y1122 + Y1221 + Ya2ea P dT = Z Ly (10.11)

w,vu’ v =1

where
o
Tt = / Vo Yiwae AT, (10.12)

We introduce also the phase factor ¢;,(p) as the time-independent part of the phase ;,(p),
so that

p2
@in(p) = di(p) — mti- (10.13)
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Then the integral I,,,/,» can be expressed with the help of the integral form of Eq. (10.6)
(comp. Eq. (9.14)) as

X exp {l{d)lu(p) - ¢2v(p) - ¢1u’(q) + ¢2v’(Q)} - %% T} . (1014)

Now we proceed in a complete analogy to the previous chapter, Egs. (9.37) and (9.38) to
get

Iuvu’v’ = rmhm /(;OO % [F(p)]Q exp {1|:¢1u(p) - ¢1u’ (p) - ¢2’u(p) + ¢2vl (p)}} dp (1015)

It is not difficult to show that

S exp {i[oru(p) — b1 (p) — 620 (p) + 620 (0)] }

I gyl —
u,v,u’ w'=1

=4 [1 -+ cos A¢1112(p)] [1 -+ cos A¢2122(p)] s (1016)
where A¢jyn(p) = ¢iu(p) — ¢ju(p). Then the numerator of the fraction (10.10) becomes

I =4whm /OO ! [F(p)]? [1 + cos Agi112(p)] [1 + cos Agaiga(p)] dp.
0 P (10.17)

The real part of the complex degrees of coherence corresponding to different paths along
the biprism filament leading to the ith detector in the denominator of the fraction (10.10)
can be expressed as

Re Yiiis = /0 T F(p) [1+ cos Adi(p)] dp. (10.18)

The time-dependent parts of the phases have canceled now, so we deal with the phases
bi1i2(p) only. With the help of Eqgs. (10.17), (10.18) and (10.10) we express finally the an-
tibunching intensity in the interferometer:

b 5 [F®)]” [1+ cos Aguiia(p)] [1 + cos Aaiaa(p)] dp
JoC F(p) [1+ cos Agi12(p)] dp [ F(p) [1 + cos Agaiaa(p)] dp” (10.19)

S =nrh

Comparing this result with S without interferometer according to (9.38), we see that
the antibunching intensity is influenced by the interferometer. Moreover, it can be expected
that S will vary if the detector configuration changes, making it possible to increase S by
a smart detector placement. Indeed, it is so as we will show in the following.
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Figure 10.2: The normalized two-electron correlation function as a function of the time difference
7 expressed in picoseconds for A¢i112(p) — Agai2(p) = 27 and a strongly excited Wien filter.
The parameters of the momentum distribution are the same as in Fig. 9.1. The antibunching
intensity is three halves of the one in Fig. (9.1).

Let us choose such a detector configuration that the phase differences A¢y112(p) and
A¢a1s(p) differ from each other by some integer multiple of 27 and vary with p rapidly
even if p changes over its narrow badwidth only (later it will become clear how to realize it).
Then cos A¢q112(p) = cos Aparaa(p) holds and the numerator of the fraction in Eq. (10.19)
can be due to the oscillations of the cosine functions evaluated as

/OOO 1—1) [F(p)]? [1 + 208 Ap1112(p) + cos? A¢1112(p)] dp ~ g /UOO 1_1) [F(p))* dp,

(10.20)
because the integral of the cosine function times [F'(p)]?/p has canceled and the integral
of the square of the cosine function times [F(p)]?/p has yielded one half of the integral
of [F(p)]?/p. The denominator in Eq. (10.19) is simply equal to unity because the cosine
terms again cancel by the integration (this causes also vanishing of the interference fringes).
The antibunching intensity S then becomes

3 <1 . 3
S ~ 57rhm/0 @) dp =5 S0 (10.21)

where Sy would be the antibunching intensity without the biprism (see Eq. (9.38)).
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Figure 10.3: The normalized two-electron correlation function as a function of the time difference
7 expressed in picoseconds for Agi112(p) — Adoroo(p) = 3w. The parameters of the momentum
distribution are the same as in Fig. 9.1. The antibunching intensity is one half of the one in
Fig. (9.1) and one third of the one in Fig. (10.2).

If we now keep the assumption about the rapid changing of A¢y112(p) and A¢paraa(p)
with p but put Agq112(p) = Aparaa(p)+nm, where n is an odd number, then cos A¢112(p) =
— o8 A¢a122(p) and by a similar argumentation we obtain the result

1 1 s 1
S~ §7rhm/0 CIF@)dp =58, (10.22)

We see that just by very slight changes of the phases in the experiment it is possible
to change the antibunching intensity between one half and three halves of the intensity
without the biprism. This shows that the interferometer brings a new quality to electron
correlations that could not be achieved by other means. The influence of an interferometer
on correlation functions can be even stronger in more complicated interferometers. As has
been shown by Silverman [26, 27|, in certain cases it is even possible to observe electron
bunching.

Now, there is a question how to put the assumptions about the A¢’s into practice. This
can be achieved by a very useful element in the interferometer, the Wien filter mentioned
in Chapter 2. This element is used for introducing longitudinal shifts between the two
paths going from the source to a detector. If the Wien filter is strongly excited, the
phase differences Adq112(p) and Agoraa(p) vary with p rapidly, which causes vanishing
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of the interference fringes'. At the same time, by placing the detectors close to each
other in the lateral direction and changing their lateral distance, it is possible to change
the difference Agy112(p) — Aga1a2(p) very sensitively. For example, if the lateral distance of
the detectors is equal to s times the fringe separation, then A¢112(p) — Agaraa(p) = 27s.
However, we have said there are no more fringes if the Wien filter is strongly excited. This
does not really matter because we mean fringes that would exist without the Wien filter. So,
putting the detectors to a separation equal to an integer or half-integer multiple of the fringe
separation, the antibunching intensity becomes three halves or one half times the intensity
without interferometer, respectively. The fact that it is possible to increase the two-electron
correlations using the Wien filter is very interesting because in the case of one-electron
coherence, the effect of the Wien filter is destructive: the contrast of interference fringes
always suffers a decrease under the influence of a Wien filter.

An experiment allowing the verification of our result would not be unthinkable provided
that antibunching could be measured at all. We would just have to make sure that each of
the two detectors is illuminated by one fringe only and not extended over several fringes.
In the latter case the averaging over phases would cancel the effect, as we will see in
the following.

The dependence of the normalized two-electron correlation function 9522) on 7 is shown
in the figures 10.2 and 10.3 for both the discussed cases. It follows from the geometry of
the experiment that the Wien filter also moves the whole correlation function along the 7-
axis. Therefore, even though the detectors are placed at the same distance from the source,
the centre of symmetry of the function g%) is shifted in time.

10.1.2 Average antibunching intensity

Now, there is still a question what happens with the antibunching intensity S if the detec-
tors are extended over several fringes. Then we have to average S over the phase differences
A¢r112 and Agaiae. However, as the illumination may be different at different places of
the interference region, it is necessary to use the weights equal to the product of the one-
electron correlation functions for the averaging (we consider now again a general situation
without any assumptions about the how much the Wien filter is excited etc.). As factors
proportional to these correlation functions stand in the denominator of the fraction (10.19),
the weighed averaging of S is equivalent to a simple averaging of the numerator only. As
the phase differences A¢y112(p) and Agaaa(p) change now independently, all the terms
containing the cosine functions give zero. Therefore it holds

(5) = [~ ]19 (F(p)2dp = So. (10.23)

We see that the averaged antibunching intensity in the interferometer is equal to the in-
tensity without an interferometer, which could be expected. So, if the detectors are much

LA precise calculation of phase changes of the propagators introduced by the Wien filter and the electron
biprism can be found in the diploma thesis of Peter Sonnentag [28§].
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larger than the fringe separation, no increase or reduction of antibunching intensity should
take place.
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Figure 10.4: The four possibilities how the two electrons can come from the source to the detec-
tors. The corresponding cross-correlation functions are I'1191, I'1192, ['1921, and I'1999, respectively.
As we do not distinguish between the four possibilities, all of them interfere and the total cross-
correlation function I'19 is equal to the sum of the partial cross-correlation functions.



Chapter 11

Can measurement at one detector
influence detection at another one?

In this chapter we will discuss an interesting problem that deals with the detection prob-
abilities and counting rates on two electron detectors. We will show that the properties of
the two-electron correlation function might seem at first sight to have quite absurd conse-
quences and then try to find the solution of this problem. It should be noted that most
considerations in this chapter hold generally and are not limited to quantum-mechanical
correlation functions. This is because we deal with quantities such as conditional proba-
bilities that are governed purely by the laws of the classical probability theory. Thus our
results can be applied on electrons as well as e.g. projectiles from a machine gun shooting
at two “detectors” (which is a good example of classical antibunched particles). The reason
why we included such, in some sense “classical” chapter into this dissertation was that it
is not unlikely to meet the described problem when one works with correlation functions
and in such a case this chapter might be helpful.

11.1 Problem

Let O; (i = 1,2) denote the time probability density of detecting an electron at the ith
detector at time ¢;. This quantity is at the same time the counting rate at the ith detec-
tor. The probability of detecting an electron at the ith detector within the time interval
(t;, t; + dt;) (we will call such a detecting “event i” in the following) is then P (i) = O; dt;.
Similarly, let O, denote the probability density of detecting an electron at both the detec-
tors, i.e., at detector 1 at time ¢; and at detector 2 at time ¢5. The probability P(2 A 1)
that we detect one electron at detector 1 within the time interval (¢;,¢; + d¢;) and another
electron at detector 2 within the time interval (t5, ¢, + di) is then equal to Oyo dt; di,.

From the fact that G{2 = G{"G{" (1 — |712/?) according to Eq. (6.30) it follows
O12 = 010, (1 - \’712|2) (11.1)

(see end of section 3.2). Now, suppose that event 1 has occurred, i.e., that we have
detected an electron at detector 1 at time ;. The probability of detecting another electron
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at detector 2 is then equal to the conditional probability P(2|1) which is according to
the well-known formula from the probability theory equal to

P(2 N 1) . 012 dtl dtg

P@1) = P(1)  Odt

= (1 = |112[*) Oz dts. (11.2)

The average number of electrons Ny(T') arriving into detector 2 within a time interval
(t,t + T) can be calculated as a time integral of the probability P(2|1). For a stationary
field, O, is a constant in time and therefore

t+T t+T 9 t+T 5
NQ(T) = /; P(Q‘l) dtg = /t‘ (1 — |712‘ )02 dtg = OQT — 02/; "}/12| dt2
(11.3)

Consider now a simple coincidence experiment without a biprism as described in Chapter 9
and suppose that both the detectors lie within the coherently illuminated area at the same
distance from the source. Then |y15|? reaches its maximum for ¢; = #, and its integral
over all ¢, is approximately equal to the coherence time T, (let us suppose in the following
that it is precisely equal for simplicity). This holds with a good accuracy also for the
last integral in Eq. (11.3) if ¢; € (t + T.,t + T — T.), that is, if the time ¢; is “well”
contained in the time interval (t,¢ 4+ T) because |yi2|? is practically equal to zero for
to & (t1 — T, t1 + T,). The average number of counts on detector 2 during the time 7' thus
becomes Ny(T) = Oo(T — T,), which is less than O,T, however. So, once an electron was
detected at the first detector, the number of electrons arriving into the second detector is
reduced by O,T, with respect to the situation when we do not perform any measurement
on the first detector. Now, in average there are Ny = OT electrons coming to detector 1
during the time interval (¢, ¢+7'). So let us say that electrons have been detected at detector
1 at the times t11,%19,...,%1n,. Each of these electrons has a similar effect as described
above on the number of counts at detector 2 '. The reason is that the probability density
of detecting an electron at detector 2 is reduced for all times ¢, that are close to some
moment when an electron at detector 1 was detected. The average reduction of number
of counts registered at detector 2 thus becomes approximately N;OyT. = O;0,T7T, and
the relative reduction is O10,TT,./(O2T) = O1T,. Tt looks very strange: just by turning
on one detector (which results in detecting in average O;T electrons within the time 7T'),
the average number of counts registered at the other detector is reduced by the factor O, T,,
which can be a measurable value. This evidently cannot be true. Indeed, it is not true and
we will show why in the following.

11.2 Solution

The problem is that when we say that Ny = OT electrons were detected at detector 1 at
times ¢y, t12,...,t1n,, in fact we do not say anything about what happened in between,

Lin fact, this is correct only if the moments of detections at detector 1 are far from each other compared
to the coherence time T, i.e., if 01T, < 1; in the opposite case we would have to take into account also
three-, four-, ... electron correlations
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i.e., if maybe some other electrons were also detected. The situation is different when we
say that N; electrons were detected at detector 1 at times ty1,%19,...,t1n, but no other
electrons were detected in between. We have seen that the detection on detector 1 reduces
the counting rate on detector 2. As the counting rate on detector 2 should be unaffected
by a measurement on detector 1, we can therefore expect that no detection at detector 1
will enlarge the counting rate at detector 2. Let us see now if this really happens.

So, let us suppose that no electron was detected by detector 1 during the time interval
(t1,t; + dt;) and let us calculate the probability of detecting an electron at detector 2 with
this condition. To do this, we use the fact that the probability of the event 2 (detecting
an electron at detector 2 within the time interval (to, ¢, + dt2)) can be decomposed into two
parts: the probability P(2 A 1) that event 2 occurs while event 1 (detecting an electron at
detector 1 within the time interval (¢;,¢; + dt;)) also occurs and the probability P(2 A 1')
that event 2 occurs while event 1 does not occur. Mathematically expressed,

P2) = P2A1)+ P(2A1) (11.4)

The conditional probability P(2|1') that event 2 occurs when event 1 does not occur can
be then evaluated using Eq. (11.4) as follows:

P2A1)  P@2)—P@2A1)  Oydty— Opdtydt, 1-32dt
- = == 2 OQ dtQ

P(21") = = -
211 P(1) 1— P(1) 1— 0, dt L=0rdt 7 )

Expanding the denominator of the last fraction and neglecting all the terms of order d#?
and higher, we get

P2I1) = [1 4 (01 - %) dtl} 0, dt. (11.6)
2

Substituting Eq. (11.1) this into Eq. (11.6), we get

B 010 (1 = [n2/?)
O,

P(2|1I) — [1 + (Ol ) dt;| 02 dtg == (1 + |712‘201 dtl) 02 dt2

(11.7)

Eq. (11.7) shows that if no electron has arrived to the first detector during the time interval
(t1,t; + dtq), the probability that an electron arrives to the second detector increases.
The fact that this increase is proportional to dt; is quite reasonable. The longer is the time
interval dt;, the larger amount of information we have by knowing that no electron was
detected within this interval. Indeed, the term O;dt; expresses the average number of
electrons coming to detector 1 within the time interval dt;. Thus, loosely speaking, if we
know that no electron was detected during the time d¢;, during which we would normally
expect O; dt; detections, the weight of our information is in some sense equivalent to
the weight of information about a detection of one electron multiplied by O, d¢;. Comparing
Egs. (11.7) and (11.2), we then see that the increase of the number of counts on detector 2
in case of no detection on detector 1 is the same as the decrease of the number of counts in
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the case of a detection on detector 1 (both per the same amount of information). Thus, it
really happens what we anticipated and we are more ready now to believe that the average
counting rate on detector 2 is really unaffected by any measurements performed on detector
1. It should be noted that the presented explanation of the problem just shows where there
is a mistake in the argumentation leading to the senseless result. To show precisely that
the counting rate on detector 2 is not influenced by any measurement on detector 1 in
the outlined way would require a more precise approach using electron correlations of all
orders.



Chapter 12

Conclusion

12.1 Summary

The main aim of this dissertation was to describe the coherence and correlational properties
of free electrons in relation to experiment. For this purpose the correlation functions
were introduced that express the joint probability of detecting electrons at different places
and times. A detail derivation of the correlation functions was given for three states,
the chaotic, generalized chaotic and pure ones. Even though the result for the chaotic
state is not original, the detail calculation step by step is instructive and can be helpful
for calculations of correlation functions for other states. I have not found such a detail
calculation in literature and therefore have included it into the dissertation.

As in most published works only spin-polarized or completely unpolarized particles are
considered, which is not always the best approximation, the evaluation of the correlation
functions with taking the electron spin into account was included. We have seen that
the correlation function of order k for partially polarized electrons can be expressed using
the correlation functions of all orders up to k for polarized electrons and the degree of spin
polarization. I assume that this result has not been published yet.

Important inequalities between correlation functions of different orders were then de-
rived using the methods of linear algebra. These inequalities show the fermionic nature of
electrons in a very universal and compact way. Namely, they say that the probability of
detecting electrons at given places and times can never exceed the probability of detecting
electrons at only some of these places and times multiplied with the probability of detect-
ing electrons at the remaining places and times. Either in this case I am not aware that
similar inequalities would have been published.

The discussion about the correlation function of the field-emission electron field included
results that are mostly generally known. The fact that the angular, longitudinal and
temporal extents of the two-electron correlations are equal to the coherence angle, length
and time, respectively, was pointed out.

The properties of the two-electron correlation function in an electron interferometer
was also discussed. It was shown that the electron correlations can be made stronger or
weaker at certain spatial domains with the help of the Wien filter. The question whether
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this fact could be used for making the measurement of electron correlations easier remains
open. I suppose that the results from this chapter belong among the original ones.

For a little bit recreation a problem with the counting rate was introduced that seemed
to lead to a nonsense. It was shown where a mistake in the argumentation was and how
to treat the problem properly.

This dissertation does not try by any means to provide a complete theory of electron
correlations. I concentrated primarily on correlation functions and omitted e.g. the prob-
lems of electron counting statistics. I should also mention that it is possible to build
the theory of electron correlations in a different way using the Liouville space formalism

29, 30].

12.2 Further research

At the very end of this dissertation, I would like to outline several direction of possible
further research.

We have seen that in the theory of electron correlations there are many problems
that are still unclear. The most fundamental two of them are the problems of electron
emission and detection processes. The problem of field-emission would deserve a very
detail analysis covering investigations of the electron state in the metal, the tunneling
process, the interaction between the electrons during this process, the influence of the strong
electrostatic field in the neighbourhood of the tip on the electron states and many other
physical phenomena. I believe that such an analysis is possible even if it will be definitely
very complicated.

The problem of the electron detection is of a similar difficulty. Its solution would re-
quire especially a precise analysis of the interaction between the detected electron and
the material of the detector from which the secondary electrons are emitted. The indistin-
guishableness between the detected electron and the emitted ones would also have to be
taken into account. Of course, the general problem of measurement in quantum mechanics
— the reduction of state — plays an important role also in the electron detection pro-
cess. We can ask, for example, when does exactly this reduction take place? Is it already
when the primary electron hits the sensitive layer of the detector, or later, when maybe
a coherent superposition of many avalanches of secondary electrons at different places of
the microchannel plate has come into existence?

The question of the back-action of the detection process on the electron field is also
important. It can, in some sense, enable a better understanding of the electron correlations.
Here results from quantum optics (see [31], pp. 69-72) could be probably used successfully.

Last, but not least, also other types of fermions than electrons would deserve our atten-
tion concerning their correlational properties. Maybe it will become possible to measure
correlations of neutrons in the future, or even of such rare particles as the positrons.
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