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Abstrakt

Tato práce £áste£n¥ pokrývá problematiku analytických poruchových metod uºívaných

v optice nabitých £ástic, d·raz je kladen p°edev²ím na výpo£et geometrických aberací

optického systému. Zejména se pak práce v¥nuje metod¥ Lieových algeber, která se

standardn¥ pouºívá ve fyzice urychlova£·, a srovnává ji s metodami, jejichº pouºití je

v optice £ast¥j²í.

Ve své práci se nejprve v¥nuji r·zným p°ístup·m p°i popisu optických vlastností

sytému, formulacím rovnice trajektorie a vlastnostem °e²ení jejího lineárního p°iblíºení.

Dále jsou zde popsány jednotlivé analytické poruchové metody a jejich aplikace na

jednoduchém p°íkladu osov¥ symetrické magnetické £o£ky. V poslední kapitole je pak

popsána symplektická klasi�kace aberací.

V pr·b¥hu prvních let svého studia jsem se v¥noval matematickému základu metody

Lieových algeber, kanonickému poruchovému po£tu a jejich vzájemnému vztahu. Zjis-

til jsem, ºe existuje p°ímý vztah mezi kanonickým poruchovým po£tem a faktoriza£ním

teorémem. Dále jsem pouºitím vhodné zobecn¥né kanonické transformace roz²í°il pouºití

metody Lieových algeber i na p°ípad parametrizace trajektorie polohami v rovin¥ p°ed-

m¥tu a apertury, která se £asto pouºívá v geometrické optice. Tuto metodu jsem s os-

tatními metodami aplikoval na p°íklad magnetické osov¥ symetrické £o£ky, u kterého je

moºné jednotlivé p°ístupy snadno vzájemn¥ porovnat.

B¥hem dal²ího studia jsem narazil na problém vhodné klasi�kace abera£ních poly-

nom· a jejich vztah·. Ukázalo se, ºe klasi�kace je ovlivn¥na tvarem paraxiální apro-

ximace � ovliv¬uje vztahy mezi abera£ními koe�cienty. Protoºe tyto vztahy jsou velmi

komplikované v obecném p°ípad¥, zam¥°il jsem se na p°ípad stigmatických systém·.

Klasi�kaci abera£ních polynom· jsem popsal jako reprezentaci Lieovy grupy asociované

k Lieov¥ algeb°e kvadratických polynom·, které jsou ur£ené kvadratickou £ástí hamil-

toniánu. Strukturu této reprezentace jsem explicitn¥ popsal. V neposlední °ad¥ jsem

také zmínil symetrii abera£ních polynom· vzhledem k zrcadlení v·£i rovinám, které

obsahují optickou osu.



Abstract

This work covers partly the �eld of analytical perturbation methods that are used in

charged particle optics; the emphasis is given mainly on the calculation of geometrical

aberrations of an optical system. In particular, the Lie algebra method often used in

accelerator physics is described and compared with more usual methods used in charged

particle optics like the trajectory method and the eikonal method.

First I describe basic approaches in the description of the optical system properties,

formulations of the trajectory equation, and the properties of the paraxial approxima-

tion. The description of the most common analytical perturbation methods and their

application to a simple round magnetic lens are subject of the next part. Finally, in the

last part the symplectic classi�cation of the aberration polynomials is described.

During the �rst two years of my PhD study I dealt with the mathematical back-

ground of the Lie algebra method, canonical perturbation theory, and its connection

with the Lie algebra method. I showed that there exists a signi�cant relationship be-

tween the factorization theorem and the canonical perturbation theory. The Lie algebra

method has been extended to the case when the parameterization by position in the

object and aperture plane is used.

During the next study I solved an issue of advisable classi�cation of the aberration

polynomials and their relationship. It was shown that the way of classi�cation is con-

nected to the form of the paraxial approximation that a�ects the relationship among

the aberration coe�cients. Because of the complexity of general system classi�cation,

the e�ort was aimed at the classi�cation of stigmatic systems. The aberration polyno-

mials were classi�ed as a representation of the Lie group adjoint to the algebra of the

quadratic polynomials that are determined by the quadratic part of Hamiltonian. This

representation was explicitly described. I also discussed the symmetry of aberration

coe�cients according to re�ection.
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1 Introduction

Calculations of electron or ion optical systems are mostly done in the approximation

of geometrical optics; the quantum e�ects are in most cases negligible. The standard

computation methods come either from the trajectory equation, which is derived from

the equation of motion for a particle in electromagnetic �eld, or from the eikonal equa-

tion. Unfortunately, both equations are not analytically solvable for other than trivial

problems.

The paraxial approximation provides the �rst insight into the properties of an optical

system. This linear approximation of the trajectory equation is also used in the light

optics. The description of the paraxial properties is essential for the basic system design.

Unfortunately, the omission of higher order terms in the trajectory equation is much

more problematic than in light optics. In light optics the maximal resolution is given by

the wave length of light, it varies between 400 � 800 nm. Objects of these dimensions

cannot be observed with this technology. On the other hand, the wave length of electron

is in the order of magnitude of pm depending on its energy. Hence, in electron optics

the resolution is given mainly by the in�uence of the nonlinear terms in the trajectory

equation.

The nonlinear terms in the trajectory equation cause that a point is not imaged on a

point by the optical system. This property of optical systems is already known from the

light optics, where it was described by Seidel in 1856 (Seidel aberrations). However, the

systems in electron optics contain more complicated elements; therefore, the nonlinear

properties of these systems are more complicated too: the elements with lower than

axial symmetry are often used in electron optical systems and the magnetic �eld causes

that the electron rays are not perpendicular to the wave surfaces. As a consequence

aberrations with no analogy in light optics are present in electron optics. For these

reasons it was necessary to develop new perturbation methods that are suitable for the

description of nonlinear properties of electron optical systems.

These methods are represented by the trajectory method, the eikonal method, and

the Lie algebra method. All methods are analytical perturbation methods, each of them

is from one point of view advantageous and from the other one disadvantageous. The

trajectory method is based on an iterative solution of trajectory equations, the eikonal

method comes from the perturbation method for the eikonal and the Lie algebra method

from the canonical perturbation method.
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The Lie algebra method was developed at University of Maryland by A.J. Dragt

et al. in 1980's. It was applied step by step in imaging electron optics but also in

accelerator physics. The method stands out by its stability in the calculation of high-

order aberrations and in the description of the periodical systems. It introduces the Lie

algebra structure on the space of aberration polynomials. Thus, it is advisable for the

description of structure of aberration polynomials and for the study of global properties

of the system.

The aim of my PhD thesis is to describe these three methods, to solve a simple

optical system by using all of them and to compare the procedures and the insight into

the structure of the system that they provide.

The second chapter contains basic approaches in description of the properties of

optical systems, particularly di�erent forms of trajectory equation and its derivations.

In the third chapter the basic properties of �elds that are used in charged particle

optics are summarized. Particular forms of series expansions of �elds in the vicinity of

the optical axis are also presented.

The next chapter deals with the method of solution of the trajectory equation. The

lager part of the chapter describes the paraxial approximation for mono�energetic and

general dispersion case. The form of the solution is described both in Lagrangian and

Hamiltonian variables. At the end of the chapter a procedure for a general case is

outlined.

The �fth chapter contains an overview of the perturbation methods. After a short

introduction of the di�erential algebra method the description of the trajectory method,

the eikonal method, and the Lie algebra method is presented in more details. These

methods are applied to a simple but important example � a round magnetic lens.

In the sixth chapter the structure of aberration polynomials according to represen-

tation of Sp(2,R) is described. The in�uence of the form of the paraxial approximation

on the structure of the aberration polynomials is explained too. The last part covers the

description of the symmetry of the aberration polynomials with respect to the re�ection.
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2 Trajectory Equations

The motion of particles in electromagnetic �eld is completely determined by the equa-

tions of motion. Unfortunately, their mathematical form does not describe the optical

properties in a consistent way. The use of the time parameterization in case when just the

trajectories of particles and their directives are relevant would lead to clumsy formula-

tions without direct optical meaning. That is the reason why the time parameterization

of trajectory is replaced by other parameterization, e.g. by the optical axis position.

The equations of motion that use time derivatives are then replaced by the trajectory

equation which contains derivatives with respect to the new independent variable. The

solution of such equations are just particle trajectories not the motion of particles; how-

ever, if the rays are known the velocity of particle in given point can be easily calculated.

The coordinate system will be chosen so that the optical axis coincides with the

coordinate axis z and coordinates x and y form the transversal space. The optical

devices are constructed so that the particle with given energy that starts to move on

the optical axis and along it remains on the axis. Such a particle is known as design

particle and its energy as design energy. The design trajectory term is used for the

trajectory of the design particle. Unless stated otherwise we will restrict ourselves to

systems with straight optical axis in which case it is coincided with the design trajectory.

The treatment to the trajectory equations di�ers according to which formulation of

mechanics is used. We will review some of them.

2.1 Newton Formulation

The relativistically modi�ed second Newton's law for electron in electromagnetic �eld

m
d
dt

(γṙ) =−eE−eṙ×B , (2.1)

completely describes the system evolution. The standard notation for time derivative is

used, γ =(1− v2

c2 )−
1
2 , r =(x,y,z), the electron current e=1.602 ·10−19C and mass of the

electron m =9.109534 ·10−31kg. However, while knowing just the particle trajectories is

relevant in optics we switch to parameterization of the trajectory by the axis coordinate

z. We will consider only time independent forces in next two sections.

Let us start with the time parameterized trajectory ζ(t) = (x(t),y(t),z(t)), supposing

it can be reparameterized by the axis coordinate z like ζ(z) = (x(z),y(z),z). The time
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derivative of the trajectory is then expressed

dζ

dt
=

dζ

dz

dz(t)
dt

=
dζ

dz
vz ,

or more generally the time derivative along trajectory takes form

d
dt

= vz
d
dz

. (2.2)

The z-component of velocity reads

vz =
v√

1+q′2

with notation q =(x,y)T for the vector of transversal deviations of the trajectory from

the optical axis used. The velocity v is in direct relationship with kinetic energy of the

particle. It can be expressed using scalar potential Φ. If we suppose that all particles

have the same energy, the additive constant in Φ can be chosen so that value eΦ coincides

with kinetic energy of the particle. The relativistic factor γ then takes form

γ =1+
eΦ
mc2

. (2.3)

We will express the velocity using the kinetic momentum

g = γmv =
e

η
Φ∗

1
2 , (2.4)

where η =
√

e/2m and the acceleration potential

Φ∗=Φ
(
1+

e

2mc2
Φ
)

(2.5)

was introduced. Then using previous equations one can �nd z component of velocity

vz =
eΦ∗

1
2

mηγ
√

(1+q′2)
,

with using of which (2) gives

d
dt

=
eΦ∗

1
2

mηγ
√

1+q′2

d
dz

(2.6)

Substituting into (1) one can �nd after some trivial calculations the trajectory equations

d
dz

((
Φ∗

1+q ′2

) 1
2

q′

)
=

1
2
γ

(
1+q′2

Φ∗

) 1
2

∇Φ+η

(
By−y′Bz

−Bx +x′Bz

)
, (2.7)
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where prime denotes the derivative with respect to z. Let us note that one can use this

form of trajectory equations only if the trajectory can be parameterized by the axis

coordinate otherwise, as in case of electric mirror, the parameterization must be switch

to some other.

For beam of particles with di�erent energy a new quantity δ with the meaning of

particle energy deviation from design particle has to be introduced. As the system is

time independent, δ remains constant along each ray. For the scalar potential to be

determined uniquely eΦ must coincide with kinetic energy of the particle which has

design energy. The relationship between the relativistic factor γ and scalar potential Φ

is then modi�ed to

γ =1+
eΦ
mc2

+
δ

mc2
= γ0 +

δ

mc2
. (2.8)

and (4) similarly

g =
e

η

(
Φ∗+

γ0δ

e
+

δ2

2mec2

) 1
2

. (2.9)

The subscript 0 denotes the value for particles with the same energy as the design

particle has, i.e.

γ0 =1+
eΦ
mc2

The form of the trajectory equation (7) remains unchanged only the acceleration

potential must be replaced by

Φ∗+
γ0δ

e
+

δ2

2mec2
(2.10)

and relativistic factor γ by (8).

2.2 Lagrangian Approach

The particle trajectories in time parametrization are found as extremals of functional

S =

t2∫
t1

L(r(t),ṙ(t),t)dt (2.11)

called action. In case of electromagnetic �eld the function L � Lagrangian reads [2]

L=mc2

(
1−
√

1− v2

c2

)
−e(vA−Φ), (2.12)
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where A denotes the vector potential.

As we assume the Lagrangian does not explicitly depend on time, instead of direct

reparameterization the Maupertius principle can be used. The trajectories are then

found as the extremals of the functional

S =

t2∫
t1

pṙdt =
∫
ζ

p dq (2.13)

where the canonical momentum is de�ned as

p=
∂L(r ,v)

∂v
=g−eA, (2.14)

Substituting (14) into (13) and using z-parameterization one can �nd

S =

zi∫
zo

[Φ∗
1
2 (1+q′2)

1
2 −η(Axx′+Ayy′+Az)]dz. (2.15)

The physical interpretation of the integrand is index of refraction, let us denote it

M(q,q′,z) =Φ∗
1
2 (1+q′2)

1
2 −η(Axx′+Ayy′+Az) (2.16)

which is e�ectively adequate to anisotropic non-homogeneous medium.

The trajectory equations found as equations for the extremals of (15)

d
dz

∂M

∂q′
− ∂M

∂q
=0 (2.17)

take form

d
dz

((
Φ∗

1+q ′2

) 1
2

q′

)
=

1
2
γ

(
1+q′2

Φ∗

) 1
2

∇Φ+η

(
By−y′Bz

−Bx +x′Bz

)
,

which are equivalent to (7).

Even though the �nal trajectory equation is identical to trajectory equation in New-

tonian formulation, advantage of this approach is that it shows analogy between light

optics represented by Fermat's principle and electron optics. Moreover, the Lagrangian

perturbation methods can be used at the aberration computation.

The extension for case in which the particles have di�erent energy is completely anal-

ogous with description of such systems in Newton formulation. The action to minimalize
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takes form

S =

zi∫
zo

[
(Φ∗+

γ0δ

e
+

δ2

2mec2
)

1
2 (1+q′2)

1
2 −η(Axx′+Ayy′+Az)

]
dz (2.18)

and its extremals are solutions of equations equivalent to trajectory equation extended

to cases when the particles have di�erent energy. Let us note that setting δ =0 (18)

reduces to (15).

2.3 Hamiltonian approach

We drop the assumption of time independent �eld in this subsection. The relativistic

electron moving through electromagnetic �eld is described by the Hamiltonian [2]

H =
√

m2c4 +c2(p+eA)2−eΦ∞ , (2.19)

where the scalar potential Φ∞ is chosen to be zero in in�nity. However, the choice that

scalar potential expresses kinetic energy of the particle with the design energy is obvious

in electron optics. Such a potential is denoted by Φ and its relationship with Φ∞ is given

by

eΦ = eΦ∞+Ek∞ , (2.20)

where Ek∞ stands for kinetic energy of the design particle in in�nity.

The transformation to Hamiltonian describing just the deviation of energy from the

design energy would seem advisable. As the electrons are moving through conservative

�elds, such a Hamiltonian reads

H=
√

m2c4 +c2(p+eA)2−eΦ−mc2 . (2.21)

Let us note that value H along phase space trajectory equals δ used in the previous

subsections.

The phase space trajectories in time parametrization can be found as extremals of

the action

S =

t2∫
t1

(pṙ−H(r ,p,t))dt =
∫
ζ

pdr−H(r ,p,t)dt. (2.22)



16 2 TRAJECTORY EQUATIONS

With notation pt =−H the action in z-parametrization of the trajectory reads

S =

zi∫
zo

(pq′+ptt
′−K(q,p,pt,t,z))dz (2.23)

where from here p and A denote transversal part of momentum p=(px,py)T and vector

potential A=(Ax,Ay)T , respectively. The function K, the solution of

H(px,py,−K,x,y,z,t)=−pt ,

has the meaning of the Hamiltonian in z parametrization and takes form

K =−

√
e2

η2
Φ∗+

p2
t

c2
−2mptγ0−(p+eA)2 +eAz . (2.24)

The time and pt play role of canonical variables in z-parametrization.

It is convenient to employ phase-space variables so that they all vanish on the design

trajectory. Evidently this is true for all of them except t which must be replaced by new

variable τ = c(t−z/v0). It causes a change of the canonical conjugate variable pt to

pτ = pt/c. This change is represented by the canonical transformation described by the

generating function

F2 =q~p+cpτ t− pτz

β0
. (2.25)

The canonical variables q and p do not change with the transformation, and for conve-

nience we shall drop the use of tilde. The new Hamiltonian denoted H reads

H =−

√
e2

η2
Φ∗+p2

τ −2mcpτγ0−(p+eA)2 +eAz−
pτ

β0
. (2.26)

One can �nd the trajectory equations as equations for extremal of (23) which take

form of standard Hamilton equations

q′=
∂H

∂p
p′=−∂H

∂q
(2.27a)

τ ′=
∂H

∂pt
p′τ =−∂H

∂t
. (2.27b)

The case when the energy of particles does not di�er and forces do not depend on time

is described by the Hamiltonian with pτ =0 substituted into (26). When Hamiltonian

does not explicitly depends on time ie. ∂H/∂t =0, pτ =const results from (27b) .



2.4 Hamilton-Jacobi approach 17

2.4 Hamilton-Jacobi approach

This approach is based on the fact that motion can be described as a canonical trans-

formation that transforms the initial state into the state with given z. Finding of such

a transformation is equivalent to solving of the trajectory equations. In transformed

coordinates the evolution is identity, the consequence of which is vanishing of the Hamil-

tonian. This leads to Hamilton-Jacobi equation

H

(
q,

∂F2

∂q
,z

)
+

∂F2(q,~p,z)
∂z

=0 (2.28)

the solution of which is the generating function of the sought for canonical transforma-

tion and the trajectories we seek are solutions q =q(~q,~p,z) of the algebraic equation

~q =
∂F2

∂~p
p=

∂F2

∂q
(2.29)

where ~q and ~p play role of the initial conditions.

Generally, it is more complicated to solve the partial di�erential equation (28) than

the trajectory equation; however the formalism of canonical transformations is very

suitable for the perturbation calculus. The idea is not to compensate the whole Hamil-

tonian at once like in (28), but step by step only those parts that contribute to given

perturbation order. Modi�ed a little we will use this approach in Lie algebra method.
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3 The Field Computation

Except some trivial assumptions we have said nothing about �eld the electrons are

moving in wherefore we will shortly describe some methods of its calculation. Because

in the vast majority of practical optical devices the applied �elds are staticWe we can

restrict our attention to the stationary �eld.

3.1 The Basic Equations

The electromagnetic �eld is described by the Maxwells' equations which in the case of

stationary �elds reduce to [2]

∇×E=0 ∇×H= j (3.1a)

∇D= ρ ∇B=0. (3.1b)

These are to be completed by the material equations

D= εE , B=µH (H= νB). (3.2)

In ferromagnetic materials the reluctance ν is function of B =|B |. The space charge

density and current density are regarded as functions of position.

The source-free Maxwells' equations permit us to introduce electromagnetic potential

E=−∇Φ, B=∇×A (3.3)

The scalar potential then can be �nd as the solution of

−∇(ε(r)∇Φ) = ρ, (3.4)

which reduces to

∇2Φ =0 (3.5)

in domains free of space charge. Similarly one can �nd the equation for the vector

potential

∇×(ν(|∇×A|)∇×A) = j , (3.6)

which reduces for constant ν and gauge ∇A=0 to

∇2A=µj . (3.7)
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Yet another simpli�cation is possible in vacuum current-free domain, where ∇×H=0.

In such a case it is always permissible to write

B(r)=−∇W (r). (3.8)

W (r) being the scalar magnetic potential. Since ∇B=0 the scalar magnetic potential

satis�es the Laplace equation

∇2W =0 (3.9)

The simpli�cation achieved lies in the fact that only one scalar di�erential equation is

to be solved instead of three coupled.

3.2 The Field in the Vicinity of the Optical Axis

The region where the �eld will be computed is a vacuum source free domain; hence,

equations (5) and (9) can be used for the �eld calculation. More over it is known that

the �eld in the vicinity of the optical axis can be obtained by the analytic continuation

of the axial distribution. So the electrostatic or magnetic potentials can be express in

form of Taylor polynomial in transversal coordinates x and y whose coe�cients are

functions of coordinate z.

The �eld in the vicinity of the axis can be divided according to its level of rotation

symmetry. The axial symmetric electric or magnetic �eld is very often used as focusing

�eld. Other important �elds are dipole �elds with the lowest symmetry (rotation of

360◦and one plane of re�ection symmetry) and quadrupole (rotation of 180◦and two

planes of re�ection symmetry). The sextupole and octupole �elds are the multipole

�elds of the highest order used in optical devices especially for reduction of the axial

aberrations of the lenses.

The axial �eld distribution and all its derivatives must be known for us to be able

to compute the analytic continuation. The procedure is described e.g. in [1], we will
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summarise the results. For the scalar electrostatic potential one can �nd

Φ(r) =φ(z)− 1
4
(x2 +y2)φ′′(z)+

1
64

(x2 +y2)2φ(4)(z) (3.10)

−xF1(z)−yF2(z)+
1
8
(x2 +y2)(xF ′′

1 +yF ′′
2 )

+
1
2
(x2−y2)p2(z)+xyq2(z)− 1

24
(x4−y4)p′′2−

1
12

(x3y+xy3)q′′2

− 1
6
p3(z)(x3−3xy2)+

1
6
q3(z)(y3−3x2y)

+
1
24

p4(z)(x4−6x2y2 +y4)+
1
6
q4(z)(x3y−xy3),

where the �rst row represents the axial symmetric �eld, the second one the dipole �eld,

the third one quadrupole �eld and the last two represent the hexupole and octupole

�eld respectively. The meaning of z-dependent coe�cients can be found as

φ =Φ(0,0z), F1 =−∂Φ
∂x

|[0,0,z]=Ex(0,0,z), F2 =−∂Φ
∂y

|[0,0,z]=Ey(0,0,z)

p2 =
∂Ey

∂y
|[0,0,z], q2 =−∂Ex

∂y
|[0,0,z] p3 =

∂2Ex

∂x2
|[0,0,z]

q3 =−∂2Ey

∂y2
|[0,0,z] p4 =−∂3Ey

∂y3
|[0,0,z], q4 =

∂3Ex

∂y3
|[0,0,z]

As the magnetic scalar potential is the solution of Poisson equation as well its form

will be analogous to the electric one

Ψ(r) =−
∫

B(z)dz+
1
4
(x2 +y2)B′(z)− 1

64
(x2 +y2)2B′′′(z) (3.11)

−xB1(z)−yB2(z)+
1
8
(x2 +y2)(xB′′

1 +yB′′
2 )

+
1
2
(x2−y2)P2(z)+xyQ2(z)− 1

24
(x4−y4)P ′′

2 −
1
12

(x3y+xy3)Q′′
2

− 1
6
(x3−3xy2)P3(z)+

1
6
(y3−3x2y)Q3(z)

+
1
24

(x4−6x2y2 +y4)P4(z)+
1
6
(x3y−xy3)Q4(z) ,

but the meaning of the coe�cients is derived from the �ux density

B(z)= Bz(0,0,z) B1(z) =Bx(0,0,z) B2(z) =By(0,0,z) (3.12)

P2(z)=
∂By

∂y
|[0,0,z] Q2(z) =−∂Bx

∂y
|[0,0,z] P3(z) =

∂2Bx

∂x2
|[0,0,z]

Q3(z)=
∂2By

∂x2
|[0,0,z] P4(z) =−∂3Bx

∂x3
|[0,0,z] Q4(z) =

∂3Bx

∂y3
|[0,0,z]
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Knowing the vector potential is necessary for Lagrangian and Hamiltonian formula-

tion. In appropriate gauge it takes form [1]

Ax =− y

2

(
B− 1

8
(x2 +y2)B′′

)
+ (3.13a)

+
1
4
(x2−y2)B′

2−
1
48

(x4−y4)B′′′
2 −

xy

2
B′

1 +
1
24

(x3y+xy3)B′′′
1

− 1
12

(x3−3xy2)Q′
2−

1
12

(y3−3x2y)P ′
2

+
1
48

(x4−6x2y2 +y4)Q′
3−

1
12

(x3y−xy3)P ′
3

Ay =
x

2

(
B− 1

8
(x2 +y2)B′′

)
(3.13b)

+
1
4
(x2−y2)B′

1−
1
48

(x4−y4)B′′′
1 +

xy

2
B′

2−
1
24

(x3y+xy3)B′′′
2

− 1
12

(x3−3xy2)P ′
2 +

1
12

(y3−3x2y)Q′
2

+
1
48

(x4−6x2y2 +y4)P ′
3 +

1
12

(x3y−xy3)Q′
3

Az =−xB2 +yB1 +
1
8
(x2 +y2)(xB′′

2 −yB′′
1 ) (3.13c)

+
1
2
(x2−y2)Q2−xyP2−

1
24

(x4−y4)Q′′
2 +

1
12

(x3y+xy3)P ′′
2

− 1
6
(x3−3xy2)Q3−

1
6
(y3−3x2y)P3

+
1
24

(x4−6x2y2 +y4)Q4−
1
6
(x3y−xy3)P4 .

The results for the scalar potentials and z component of vector potential were written

with the accuracy up to fourth order, for the transversal part of vector potential up to

third order. The reason is to include all terms contributing to the third order aberration.

The last but not least issue relates to getting the axial �eld distribution. It can be

obtained from numerical solution of the Maxwells' equations. There exist three com-

mon methods, the boundary elements method (BEM) [27], the �nite di�erence method

(FDM) [28] and the �nite elements method (FEM) [29, 30]. All of them compute the

�eld values in nodal points, the approximate �eld value in any point can then be com-

puted using some of the spline methods [31, 32]. However, the computation of potential

derivatives is more sophisticated and in fact the accuracy of the methods used is not
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good. That is the reason why the raytracing as the method using only the �eld values

is used at �nal computation of the system parameters.
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4 Trajectory Equations � Methods of Solution

One can �nd out that the forms of the trajectory equations are similar independently

on the way they are derived or coordinates used. From the mathematical point of view

they are the set of two nonlinear ordinary di�erential equations of the second order with

variable coe�cients in case of Lagrangian coordinates which is equivalent to the set of

four ordinary di�erential equations of �rst order in Hamiltonian case.

In general, the analytic form of the solution does not exist; hence, the perturbation

or numerical methods have to be used. Although the numerical solution using mostly

Runge-Kutta algorithm is the easiest and exact one the methods that allow �nding the

solution in form of polynomial in initial conditions seem to be very suitable. We will

describe the features of these two classes of methods in following subsections.

4.1 Paraxial Approximation

The particles moving close to the optical axis are well described by the paraxial approx-

imation. It is based on the fact that the particle trajectories deviation from the axis and

their directives are so small that their second and higher powers can be neglected in the

trajectory equation. It is the standard assumption of Gaussian optics. We will suppose

that energy of particles does not di�er. Similarly to the case of the trajectory equation

two approaches can be used here: the direct linearization of the trajectory equation or

the Hamiltonian approach. We will review both of them.

Paraxial Approximation from the Trajectory Equation

The paraxial trajectory equations emerge by linearization of general trajectory equation

(2.7), like

d
dz

(φ∗
1
2 x′) =− γEx

2φ∗
1
2

+η(By−y′Bz)−
F1(F1x+F2y)

4φ∗
3
2

(4.1a)

d
dz

(φ∗
1
2 y′) =− γEy

2φ∗
1
2

+η(x′Bz−Bx)− F2(F1x+F2y)
4φ∗

3
2

, (4.1b)

where

Ex =
1
2
φ′′x+F1−p2x−q2y,

Ey =
1
2
φ′′y+F2 +p2y−q2x,

Ez =−φ′
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and

Bx =−1
2
B′x+B1−Q2y−P2x,

By =−1
2
B′y+B2−Q2x+P2y,

Bz =B.

Henceforward γ relates to the design particle, γ =1+ eφ
mc2 . Having the orientation of

dipoles and quadrupoles selected such that x−z plane is the symmetry plane of the

electric dipole and quadrupole �elds and the antisymmetry plane of the magnetic dipole

and quadrupole �elds, F2, q2, B1 and P2 vanish which reduces the paraxial approxima-

tion to

x′′+
γφ′

2φ∗
x′+

(
γφ′′

4φ∗
− γp2

2φ∗
+

ηQ2

φ∗
1
2

+
F 2

1

4φ∗2

)
x+

η

φ∗
1
2
(
1
2
B′y+y′B) =−γF1

2φ∗
+

ηB2

φ∗
1
2

(4.2a)

y′′+
γφ′

2φ∗
y′+

(
γφ′′

4φ∗
+

γp2

2φ∗
− ηQ2

φ∗
1
2

)
y− η

φ∗
1
2
(
1
2
B′x+x′B) = 0. (4.2b)

The linear di�erential equations of the second order (2a) and (2b) are not separated

and the �rst order derivatives of x and y emerge which does not �t our needs. We will

switch to the normal form of the equations which is more advisable for the description of

the solution general properties. As the term that causes mixing of coordinates generates

the rotation of particles around z axis, it can be eliminated by transition to rotation

coordinates (
X

Y

)
= R̂

(
x

y

)
(4.3)

where

R̂ =

(
cosΘ sinΘ

−sinΘ cosΘ

)
represents the rotation about angle

Θ(z) =
η

2

z∫
zi

B(z)
φ∗

1
2 (z)

dz.
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Obrázek 1: The paraxial rays in magnetic lens using standard and rotation coordinates

In such coordinates the paraxial trajectory equations read

X ′′+
γφ′

2φ∗
X ′+

(
γφ′′

4φ∗2
+

η2B2

4φ∗
+

F 2
1

8φ∗2

)
X+ (4.4a)

+
(

F 2
1

8φ∗2
− γp2

2φ∗
+

ηQ2

φ∗
1
2

)
(cos(2Θ)X−sin(2Θ)Y ) =

(
ηB2

φ∗
1
2
− γF1

2φ∗

)
cosΘ

Y ′′+
γφ′

2φ∗
Y ′+

(
γφ′′

4φ∗2
+

η2B2

4φ∗
+

F 2
1

8φ∗2

)
Y− (4.4b)

−
(

F 2
1

8φ∗2
− γp2

2φ∗
+

ηQ2

φ∗
1
2

)
(sin(2Θ)X +cos(2Θ)Y ) =−

(
ηB2

φ∗
1
2
− γF1

2φ∗

)
sinΘ.

Unfortunately the equations are still neither separated nor homogeneous. The reason

is that the �eld considered is too general for the real optic devices which contain �elds

restricted by given requirements. Let us mention some of them which are used in the

most of the devices. The stability condition for the design particle trajectory is the �rst

such a requirement. It is conditioned by vanishing of the right hand sides of (4a) and

(4b), i.e.

B2−
γF1

2ηφ∗
1
2

=B2−
F1

vo
=0, (4.5)

which forms a relationship between magnetic and electric dipole �elds � the Wien con-

dition.

As the paraxial trajectory equations (4a), (4b) are not separated another natural

restriction is to have a �eld in which they would. One can �nd two such situations. The

�rst one represents systems in which no axial magnetic �eld is present. Thus, Θ= 0,
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which leads to the paraxial trajectory equations

X ′′+
γφ′

2φ∗
X ′+

(
γφ′′

4φ∗
+

F 2
1

4φ∗2
− γp2

2φ∗
+

ηQ2

φ∗
1
2

)
X =0

Y ′′+
γφ′

2φ∗
Y ′+

(
γφ′′

4φ∗
+

γp2

φ∗
− ηQ2

2φ∗
1
2

)
Y =0.

The second and more interesting situation occurs when

F 2
1

8φ∗2
− γp2

2φ∗
+

ηQ2

φ∗
1
2

=0. (4.6)

Not only that the paraxial trajectory equations are separated but also their form is the

same for X and Y coordinates:

Q′′+
γφ′

2φ∗
Q′+

(
γφ′′

4φ∗2
+

η2B2

4φ∗
+

F 2
1

8φ∗2

)
Q=0, (4.7)

where vector Q de�ned as Q=(X,Y )T was used.

It causes the electron initially travelling on any surface αX +βY =0 remains on

this surface. Such types of systems are cold stigmatic and condition (6) is known as

the stigmatic condition. We will describe only stigmatic systems ful�lling the Wien

condition, unless stated otherwise.

This form of the paraxial equations will occur later, therefore it is suitable to de�ne

a linear operator P̂1:

P̂1(f) = f ′′+
γφ′

2φ∗
f ′+

(
γφ′′

4φ∗2
+

η2B2

4φ∗
+

F 2
1

8φ∗2

)
f . (4.8)

The equation (7) is then equivalent to P̂1(Q) = 0.

The trajectory equations may be written in more compact form using Picht's trans-

formation

Qp =φ∗
1
4Q (4.9)

that transforms the trajectory equations into

Q′′p +
(

(2+γ2)φ′2

16φ∗2
+

η2B2

4φ∗
+

F 2
1

8φ∗2

)
Qp =0, (4.10)

The result is of great interest for two reasons. First it is simpler to perform numerical

calculations than using (2a) and (2b). Secondly, as φ∗≥ 0 the coe�cient

G(z) =
(2+γ2)φ′2

16φ∗2
+

η2B2

4φ∗
+

F 2
1

8φ∗2
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in (10) is essentially nonnegative, which imposes an interesting restriction on stigmatic

electron lenses: they always exert a converging action.

Using numerical calculations one can �nd the solution of (7) in form of a block

matrix (
Q(z)

Q′(z)

)
=

(
g(z)1̂ h(z)1̂

g′(z)1̂ h′(z)1̂

)(
Q(zo)

Q′(zo)

)
, (4.11)

where 1̂ =
(

1 0

0 1

)
and g(z) or h(z) are solutions of

P̂1(g) = 0, g(zo) = 1,g ′(zo)= 0

P̂1(h) = 0, h(zo) = 0,h′(zo) = 1.

The solution in original coordinates then takes form(
q

q′

)
=

(
R̂−1 0

−Θ′ĴR̂−1 R̂−1

)(
g(z)1̂ h(z)1̂

g′(z)1̂ h′(z)1̂

)(
qo

q′o

)
, (4.12)

where Ĵ is the standard symplectic matrix

Ĵ =

(
0 1

−1 0

)
. (4.13)

The solution (11,12) are parameterized by position of the ray in object plane and its

directives. Similarly we can parameterize the rays using the position in the object plane

and the position in the aperture plane z = za. Let us choose the pair of independent

solutions c(z) and s(z) that ful�ll

P̂1(s)= 0, s(zo) = 1,s(za) = 0 (4.14)

P̂1(t)= 0, t(zo) = 0, t(za)= 1. (4.15)

The solution in rotation coordinates then reads(
Q(z)

Q′(z)

)
=

(
s(z)1̂ t(z)1̂

s′(z)1̂ t′(z)1̂

)(
Qo

Qa

)
, (4.16)

and in original coordinates takes form(
q

q′

)
=

(
R̂−1 0

−Θ′ĴR̂−1 R̂−1

)(
s(z)1̂ t(z)1̂

s′(z)1̂ t′(z)1̂

)(
qo

qa

)
. (4.17)
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The �rst form of solution corresponds to Cauchy initial value problem and the second

to boundary value problem. In the �rst case we can write the Wronskian in form

Wg = g(z)h′(z)−h(z)g ′(z) =Wg(zo)φ∗−
1
2 =φ∗−

1
2 (z) (4.18)

while in the second case the Wronskian reads

W = s(z)t′(z)− t(z)s′(z) =Ws(zo)φ∗−
1
2 (z) (4.19)

In both cases there exists the invariant quality

φ∗
1
2 (z)W (z) = const. (4.20)

The Hamiltonian formulation of the paraxial approximation

On contrary to expansion of the trajectory equation used in the previous paragraph

the Hamiltonian approach is based on the expansion of Hamiltonian into polynomial in

canonical variables. The second order of the expanded Hamiltonian completely describes

the system paraxial properties. As we suppose the monochromatic systems pτ =0 is

substituted into (2.26). Using the same restriction on dipole and quadrupole �elds as in

the previous paragraph the expansion up to the second order takes form

H0 =− e

η
φ∗

1
2 (4.21a)

H1 = e

(
F1

v0
−B2

)
x (4.21b)

H2 =
η

2eφ∗
1
2
p2 +

ηB

2φ∗
1
2
Lz +

1
2

(
eγ0φ

′′

4ηφ∗
1
2

+
eηB2

4φ∗
1
2

+
eF 2

1

8ηφ∗
3
2

)
q2+ (4.21c)

+
1
2

(
eF 2

1

8ηφ∗
3
2
− eγ0p2

2ηφ∗
1
2

+eQ2

)
(x2−y2).

Notation Lz = qxpy−qypx for z-component of angular momentum L was used. The

zero order part of the Hamiltonian does not contribute to the equations of motion and

vanishing of the H1 is equivalent to ful�lling the Wien's condition. The transition into

rotation coordinates is represented by the extended canonical transformation

Q= R̂q (4.22)

P =
η

e
R̂p

which transforms the Hamiltonian according

H̃ =
η

e

(
H(q(Q,P ,z),q(Q,P ,z),z)+

∂F2

∂z

)
,
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where the generation function F2 reads

F2 =(R̂q)P .

Applying to the quadratic part of the Hamiltonian one can �nd

H̃2 =
1

2φ∗
1
2
P 2 +

1
2

(
γφ′′

4φ∗
1
2

+
η2B2

4φ∗
1
2

+
F 2

1

8φ∗
3
2

)
Q2+ (4.23)

+
1
2

(
F 2

1

8φ∗
3
2
− γ0p2

2φ∗
1
2

+
ηQ2

φ∗
1
2

)
QT

(
cos(2Θ) sin(2Θ)

sin(2Θ) −cos(2Θ)

)
Q,

which reduces into

H̃2 =
1

2φ∗
1
2
P 2 +

1
2

(
γφ′′

4φ∗
1
2

+
η2B2

4φ∗
1
2

+
F 2

1

8φ∗
3
2

)
Q2 (4.24)

for stigmatic systems. The quadratic part of such a Hamiltonian is axially symmetric,

which causes that Lz is the integral of motion in paraxial approximation.

Using Hamilton equations of motion one can �nd the paraxial trajectory equations

Q′=φ∗−
1
2P (4.25a)

P ′=−
(

γφ′′

4φ∗
1
2

+
η2B2

4φ∗
1
2

+
F 2

1

8φ∗
3
2

)
Q, (4.25b)

which after eliminating P can be written in form of ordinary di�erential equations of

the second order

Q′′+
γφ′

2φ∗
Q′+

(
γφ′′

4φ∗2
+

η2B2

4φ∗
+

F 2
1

8φ∗2

)
Q=0 (4.26)

that agrees with results of the previous paragraph.

The solution then takes form analogous to (11)(
Q

P

)
=

 g(z)1̂ φ
∗− 1

2
o h(z)1̂

φ∗
1
2 g′(z)1̂

√
φ∗

φ∗o
h′(z)1̂

(Qo

Po

)
(4.27)

and in original coordinates(
q

p

)
=

(
R̂−1 0

0 e
η R̂−1

) g(z)1̂ φ
∗− 1

2
o h1̂

φ∗
1
2 g′(z)1̂

√
φ∗

φ∗o
h′(z)1̂

(qo

po

)
, (4.28)
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In case when the position in object and aperture plane is used to parameterize the rays,

the solution in rotation coordinates takes a similar form(
Q

P

)
=

(
s(z)1̂ t(z)1̂

φ∗
1
2 s′(z)1̂ φ∗

1
2 t′(z)1̂

)(
Qo

Qa

)
(4.29)

and in original coordinates(
q

p

)
=

(
R̂−1 0

0 e
η R̂−1

)(
s(z)1̂ t(z)1̂

φ∗
1
2 s′(z)1̂ φ∗

1
2 t′(z)1̂

)(
1 0

0 R̂(za)

)(
qo

qa

)
, (4.30)

The Picht's transformation corresponds to canonical transformation

Qp =φ∗
1
4Q (4.31)

Pp =φ∗−
1
4P

which transforms the quadratic part of Hamiltonian into form of the Hamiltonian of

linear oscillator

H̃2 =
1
2
P 2 +

1
2

(
(2+γ2)φ′2

16φ∗2
+

η2B2

4φ∗
+

F 2
1

8φ∗2

)
Q2 (4.32)

the equation of motion then agree with trajectory equation (10).

In both the approaches the paraxial approximation is presented by the linear trans-

formation described by the transfer matrix. The main consequence is that a point in

the object plane is imaged into a point in the image one. It is an important property

of the paraxial monochromatic optics. For detail description of the paraxial properties,

cardinal elements etc. see e.g. [1].

4.2 The Paraxial Transformation � General Dispersion Case

We abandon the assumption that all of electrons have the same energy. According the

previous description in such a case the new variable δ describing the energy deviation

must be introduced. Like for the space variables only the �rst power of δ will contribute

to the paraxial approximation. The paraxial trajectory equation is then obtained by

linearization of the general trajectory equation described above. If the assumptions

similar to previous subsection are used for the �eld it reads

x′′+
γφ′

2φ∗
x′+

(
γφ′′

4φ∗
− γp2

2φ∗
+

ηQ2

φ∗
1
2

+
F 2

1

4φ∗2

)
x+

η

φ∗
1
2
(
1
2
B′y+y′B) =−γF1

2φ∗
+

ηB2

φ∗
1
2

+
δF1

4eφ∗2

(4.33a)

y′′+
γφ′

2φ∗
y′+

(
γφ′′

4φ∗
+

γp2

2φ∗
− ηQ2

φ∗
1
2

)
y− η

φ∗
1
2
(
1
2
B′x+x′B) = 0. (4.33b)
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The equations must be completed by equation δ′=0. In the rotation coordinates for the

stigmatic systems ful�lling the Wien condition the equations read

X ′′+
γφ′

2φ∗
X ′+

(
γφ′′

4φ∗2
+

η2B2

4φ∗
+

F 2
1

8φ∗2

)
X =

δF1

4eφ∗2
cos(Θ) (4.34a)

Y ′′+
γφ′

2φ∗
Y ′+

(
γφ′′

4φ∗2
+

η2B2

4φ∗
+

F 2
1

8φ∗2

)
Y =− δF1

4eφ∗2
sin(Θ). (4.34b)

These are two separated di�erential equations but unlike previous chapter they are

inhomogeneous. Using the variation of parameter one can �nd the general solution
X

X ′

δ

=


g(z) h(z) −g(z)µ̂(h)+h(z)µ̂(g)

g′(z) h′(z) −g′(z)µ̂(h)+h′(z)µ̂(g)

0 0 1




Xo

X ′
o

δ

 (4.35)


Y

Y ′

δ

=


g(z) h(z) −g(z)ν̂(h)+h(z)ν̂(g)

g′(z) h′(z) −g′(z)ν̂(h)+h′(z)ν̂(g)

0 0 1




Yo

Y ′
o

δ

 . (4.36)

where the functionals

µ̂(f) =
1

4eφ
∗ 1

2
o

∫
F1f cosΘ

φ∗
3
2

dz ν̂(f) =− 1

4eφ
∗ 1

2
o

∫
F1f sinΘ

φ∗
3
2

dz (4.37)

were de�ned. Finding the solution in original coordinates x, y is trivial.

In Hamiltonian approach the dispersion case is described by the quadratic part of

the Hamiltonian (2.26) in which on contrary to (22) pτ is not neglected. If the stigmatic

systems in which the Wien's condition is ful�lled are considered the quadratic part of

the Hamiltonian reads

H2 =
η

2eφ∗
1
2
p2 +

ηB

2φ∗
1
2
Lz +

1
2

(
eγ0φ

′′

4ηφ∗
1
2

+
eηB2

4φ∗
1
2

+
eF 2

1

8ηφ∗
3
2

)
q2+ (4.38)

+
ηmc2

4e2φ∗
3
2
p2

τ +
F1mcη

2eφ∗
3
2

xpτ .

The transition into rotation coordinates and using Pτ = η
e pτ transforms the Hamiltonian

into

H̃2 =
1

2φ∗
1
2
P 2 +

1
2

(
γφ′′

4φ∗
1
2

+
η2B2

4φ∗
1
2

+
F 2

1

8φ∗
3
2

)
Q2+ (4.39)

+
mc2

4eφ∗
3
2
P 2

τ +
F1mcη

2eφ∗
3
2

cosΘXPτ −
F1mcη

2eφ∗
3
2

sinΘY Pτ .
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Obrázek 2: Focus of the rays with di�erent energy

The computation of the trajectory determined by such an extended Hamiltonian we

start from results of the previous subsection. We apply a canonical transformation which

compensates the geometrical part of (39). It coincides with (27) and the transformed

Hamiltonian takes form

H̄2 =
mc2

4eφ∗
3
2
P̃ 2

τ +
F1mcη

2eφ∗
3
2

cosΘP̃τ (g(z)X̃ +h(z)φ∗−
1
2

o P̃x) (4.40)

− F1mcη

2eφ∗
3
2

sinΘP̃τ (g(z)Ỹ +h(z)φ∗−
1
2

o P̃y).

In this coordinates the trajectory equations are trivial

X̃ ′=
F1mcη

2eφ∗
3
2 φ

∗ 1
2

o

h(z)cosΘP̃τ Ỹ ′=− F1mcη

2eφ∗
3
2 φ

∗ 1
2

o

h(z)sinΘP̃τ (4.41a)

P̃ ′
x =−F1mcη

2eφ∗
3
2

g(z)cosΘP̃τ P̃ ′
y =

F1mcη

2eφ∗
3
2

g(z)sinΘP̃τ (4.41b)

P̃ ′
τ =0, (4.41c)

after short integration one can �nd the solution

X̃

Ỹ

P̃x

P̃y

P̃τ


=



1 0 0 0 2mcηµ̂(h)

0 1 0 0 2mcην̂(h)

0 0 1 0 −2mcηφ
∗ 1

2
o µ̂(g)

0 0 0 1 −2mcηφ
∗ 1

2
o ν̂(g)

0 0 0 0 1





X̃o

Ỹo

P̃xo

P̃yo

P̃τo


. (4.42)
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Transforming to rotation coordinates and using Pτ = η
ecδ one can verify that the result

is in agreement with (35) and (36).

Similarly to monochromatic case the dispersion paraxial approximation is described

by the linear transformation. But on contrary to monochromatic one the added dimen-

sion causes that a point in the object plane is not imaged into point in the image plane.

In fact the image plane intersection of the electron trajectory with energy about δ higher

than the design energy is shifted about value proportional to δ. In the rotation coor-

dinates it reads −g(zi)µ̂(h)(zi)δ in X direction and g(zi)ν̂(h)(zi)δ in Y direction. The

example of imaging with three di�erent energies of electrons can be seen in the picture.

4.3 Polynomial Form of Solution

As a direct extension of the paraxial approximation in which the second and higher pow-

ers of the trajectory deviations and directives are neglected there appear the methods

in which only powers of higher order than a given one can be neglected. The solution

computed is then in form of the k-order polynomial, where k is the highest power which

can not be neglected. Unfortunately this extension leads to great di�culties during solv-

ing of the trajectory equation. Adding of the higher orders terms causes the equations

solved become nonlinear. Namely the trajectory equations in rotation coordinates read

P̂1(X)− δF1

4eφ∗2
cosΘ = f2(Q,Q′,Q′′,δ,z)+ ···+fk(Q,Q′,Q′′,δ,z) (4.43a)

P̂1(Y )+
δF1

4eφ∗2
sinΘ = g2(Q,Q′,Q′′,δ,z)+ ···+gk(Q,Q′,Q′′,δ,z) (4.43b)

where fl(Q,Q′,Q′′,δ,z) and gl(Q,Q′,Q′′,δ,z) are homogeneous polynomials of l-th order in

variables Q, Q′, Q′′ and δ with z-dependent coe�cients. These equations can not be

solved analytically. Fortunately we do not need the exact solution, but only its part up

to k-th order polynomial in variables mentioned. There exists a number of perturbation

methods used for the computation of such a form of solution. They are based on an

interactive solution of the trajectory equations, Lagrangian or Hamiltonian perturbation

method or on the solution of the trajectory equations in the higher degree polynomial

space where they become linear. We will describe some of the methods in the next

section.

Well, what the higher order terms cause from a physical point of view? They change

the image properties rapidly. In brief they cause an object plane point not to be im-

aged into the image plane point, the focusing is perturbed. We observe it as image
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Obrázek 3: Paraxial beam focus and focus of the same beam in�uenced by the spherical

aberration. zi is the position of the Gaussian image.

imperfection. The bene�ts of this solution form compared to direct numerical solution

of the equations of motion lie in the possibility of the qualitative description of the

imperfection, for each coe�cient of the polynomial represents an aberration, the basic

optical characteristic of the devices. Such coe�cients are known as aberration coe�-

cients. Knowledge of the aberration coe�cients is su�cient to classify the imperfections

and to �nd the way how to compensate them.

The perturbation methods compute the coe�cients of the polynomial solution either

in analytical or in numerical form. The analytical form of the coe�cients includes the

most of information about the optical elements the electron was going through, e.g. the

spherical aberration coe�cient of the axial symmetric magnetic lens reads [3]

CS =Mφ
∗− 1

2
o

zi∫
zo

(L1h
4 +2L2h

2h′2 +L3h
′4)dz (4.44)

where

L1 =
η2B′′B

8φ∗
1
2

+
η4B4

32φ∗
3
2

(4.45)

L2 =
η2B2

8φ∗
1
2

(4.46)

L3 =
1
2
φ∗

1
2 (4.47)
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and M is magni�cation in image plane. It is easy to see the in�uence of the �eld from

this form of solution, but the mathematical form of the term is complicated even if

the system is very simple. In fact the complexity of such terms increases with the

polynomial order and number of elements in the device. In general its use for higher order

aberrations is very di�cult. On the other hand there are the numerical methods which

allow expressing the numerical solution in polynomial form. The aberration coe�cients

are then computed numerically. They do not include so much information about the

system, but the method can be used for the higher orders aberrations easily.

4.4 Numerical Methods

The numerical methods mostly based on the standard Runge-Kutta numerical algorithm

compute the ray from its position and directive in the object plane. The methods do not

use the Taylor expansion of the �eld in the vicinity of the optical axis, but the values in

an arbitrary point are calculated by a spline method [32, 33] from the values of the �eld

in nodal points computed by (FEM, BEM, FDM). The advantage of this approach is

that the �eld derivatives need not be computed by which we avoid the accuracy errors.

The computation mostly does not use the trajectory equations but it is based on the

solution of the equation of motion in time parameterization

d
dt

(mγṙ) =−eE−eṙ×B , (4.48)

where on contrary to analytical methods the values of γ, E and B are given in every

point in the way mentioned above. The accuracy of such methods is given by numerical

algorithm, generally it is very high especially for small z. Nevertheless, they have two

disadvantages.

The �rst restriction comes from using any numerical method. As the computation of

one ray does not include any information about rays close to it, each ray we are inter-

ested in must be computed separately. It means that we can not qualitatively describe

the relationship between object ray conditions and the image properties � the aberra-

tions coe�cients � like from the polynomial form of solutions. Although the polynomial

regression of numerical results is the method used for such a kind of problems, it is

advisable for low orders of aberrations only [1].

Let us further note that the second disadvantage lies in the fact that the method

forms only a relationship between initial and �nal coordinates without any parameter

adopted. This after all means that the solution itself does not include any information
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about the system; hence, it is not possible to recognize which elements have to be

changed to make it better.

In spite of the issues mentioned the method can be used for the exact rays com-

putation when the �eld distribution is known. Moreover, they are used at comparing

the accuracy of polynomial form of solution as well but its use in designing of optical

devices is restricted.
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5 The Analytic Perturbation Method

The analytical perturbation methods are used for description of nonlinear properties of

the electron optical systems. They are represented by the trajectory method, the eikonal

method, and the Lie algebra method. The di�erential algebra method can be also used

for calculation of aberration integrals but it is more used for numerical evaluation of

the aberration coe�cients.

The �rst calculation of aberration was done in the early 1930s by Scherzer [8], who

used the trajectory method and by Glaser [9], who introduced the eikonal method. The

other methods were introduced much later: the Lie algebra method by Dragt [3] in 1980s

and the di�erential algebra method by Berz [7] in the late 1990s.

In this part we will shortly describe each of the perturbation method and show the

application of the trajectory method, the eikonal method, and the Lie algebra method

on the simple system of the round magnetic lens.

5.1 The Di�erential Algebra Method

It might at least seem courageous to start the introduction to perturbation methods used

in the electron optics with the di�erential algebra method [7], which is not as familiar in

electron optics community as methods described in following subsections. However, the

features of the polynomial form of the solution straightly lead to the usage the method.

Even though the polynomial form of the solution is not the exact, it is exact up to order

of the solution polynomial, e.g. the polynomial solution

x=xo−
1
2
f2(z)x2

o +g(z)x′o (5.1)

is second order approximation of the exact solution

x=xo +cos(f(z)xo)−1+sin(g(z)x′o) .

The principle of the di�erential algebra method resides in the observation that the

nonlinear approximated solution (1) in coordinates xo, x′o corresponds to the linear

approximation of the map in coordinates xo, x
′
o extended by the polynomial coordinates
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x2
o, xox

′
o and (x′o)

2,

x

x′

x2

xx′

(x′)2


=



1 g(z) − 1
2f2(z) 0 0

0 g′(z) −f(z)f ′(z) 0 0

0 0 1 2g(z) g2(z)

0 0 0 g′(z) g′g

0 0 0 0 g′2





xo

x′o

x2
o

xox
′
o

(x′o)
2


(5.2)

which is the solution of some linear di�erential equation in the polynomial space of the

second order. Thus if one �nds such equations from the nonlinear di�erential equations

in coordinates x and x′, just the set of the linear di�erential equations will be solved,

the result of which can be written in matrix form similar to (2). The coe�cients in the

polynomial solution will be represented by the matrix elements present in �rst two rows.

Now let us apply it to the trajectory equation.

The trajectory equations in accuracy up to k-th order read

q′=
∂H2(q,p,z)

∂p
+ ···+ ∂Hk+1(q,p,z)

∂p
(5.3a)

p′=−∂H2(q,p,z)
∂q

−···− ∂Hk+1(q,p,z)
∂q

, (5.3b)

Now we will �nd the linear approximation of these equations in the polynomial

space of the k-th order in variables q, p. The derivative of the di�erential algebraic

basis element |l1,l2,l3,l4 〉=xl1yl2pl3
x pl4

y in such a space reads [10]

d
dz
|l1,l2,l3,l4 〉= [ |l1,l2,l3,l4 〉,H2 + ···+Hl] (5.4)

where the Poisson bracket are de�ned as

[g,h] =
∂g

∂q

∂f

∂p
− ∂g

∂p

∂f

∂q
(5.5)

and l = k− l1− l2− l3− l4 +2, which is enough for us to describe the kth aberration order,

as degree([g,h])= degree(g)+degree(h)−2.

Using this procedure one can �nd the set of
(
4+k

k

)
−1 linear di�erential equations of

the �rst order which determines the solution up to k-th order. Generally it takes form

w ′+Â(z)w =0 , (5.6)

where

wT =(x,y,px,py,x2,xy,...,p2
y, ...,xk,...,pk

y). (5.7)
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The evolution operator of which can be formally written

M(z,zo) = T exp
(
−
∫ z

zo

Â(t)dt

)
, (5.8)

where T represents the time ordering. The usual way of practical computation is based

on iteration method, but unfortunately the matrix Â with block structure

Â =



4×4

�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _
4×20

�
�
�
�
�
�
�

. . .

�
�
�
�
�
�

4×
(
3+k

k

)
______

0 20×20
_ _ _ _ _ _ _ _

. . . 20×
(
3+k

k

)
______

0 0 .
_ _ _ _ _ _ _ _

�
�
�
�
�

.

0 0 . . .
(
3+k

k

)
×
(
3+k

k

)


(5.9)

is not nilpotent which causes that Ân 6=0 for any n; hence, the iteration method will not

converge. The standard way of calculation used in di�erential algebra method is to solve

the equation numerically using eg. Runge�Kutta method. It causes that the method is

not analytical but it combines approaches of analytical and numerical methods.

This di�culty is surpassed by the use of interaction coordinates(
~Q

~P

)
=M−1

1

(
q

p

)
, (5.10)

in which the quadratic part of Hamiltonian vanishes and the trajectory equations read

~Q′=
∂H int

3 (~Q,~P ,z)
∂~P

+ ···+
∂H int

k+1(~Q,~P ,z)

∂~P
(5.11a)

~P ′=−∂H int
3 (~Q,~P ,z)

∂~Q
−···−

∂H int
k+1(~Q,~P ,z)

∂~Q
, (5.11b)

where the H int is transformed Hamiltonian � interaction Hamiltonian. We will discuss

it more particularly in the Lie algebra method. The linear extension of the trajectory

equation in k-th order polynomial space takes form

~W ′+Âint(z) ~W =0 (5.12)
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where the matrix Âint with structure

Âint =



0

�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _
4×20

�
�
�
�
�
�
�

. . .

�
�
�
�
�
�

4×
(
3+k

k

)
_____

0 0
_ _ _ _ _ _ _ _

. . . 20×
(
3+k

k

)
______

0 0 .
_ _ _ _ _ _ _ _

�
�
�
�
�

.

0 0 . . . 0


(5.13)

is nilpotent � (Âint)k+1 =0 � which causes the iteration method to converge in k steps.

One can then express the transfer map

M̃ = 1̂−
z∫

zo

Â(t)dt+

z∫
zo

dt1

t1∫
zo

dt2Â(t1)Â(t2)+ ···+(−1)k

z∫
zo

dt1 ···
tk−1∫
zo

dtkÂ(t1)···Â(tk) .

(5.14)

In original coordinates the solution reads(
q

p

)
=M1

(
~Q(z)
~P (z)

)
(5.15)

Previous text was only short description of principles of the method. More informa-

tion can be found in [7]. The method was implemented into computer code [24] and it

is often used for numerical calculation of higher order aberration [26]. Such calculation

is based on equation (6). The result is not the formula for the aberration coe�cient like

the formula (4.44) but only the numerical value. The form of the method is independent

from the order of aberration. Thus, having exact axial potential and their derivatives

we can compute aberrations of any order. But the use of the method is limited by

inaccuracy of the higher order derivatives of axial potential in real optical systems.

5.2 The Trajectory Method

Although the di�erential algebra method allows us to compute the polynomial form

of solution in a really representative way, �nding the analytical form of di�erential

equations in higher polynomial space might grow too lengthy. In the trajectory method

the polynomial form of solution is computed directly from the trajectory equations, but

on the other hand it loses the transparency of the di�erential algebra method.



5.2 The Trajectory Method 41

The computation is commonly based on the iterative solution of the trajectory equa-

tion (2.7), in which the linear approximation is taken as a initial assumption [1]. The

equation for the k-th iteration in the rotation coordinates then takes form

P̂1(Q[k]) = f2(Q[k−1],Q[k−1]′,Q[k−1]′′,z)+ f3(Q[k−1],Q[k−1]′,Q[k−1]′′,z)+ ··· , (5.16)

where Q[0] =Q[0](Qo,Q′
o,z) is the solution of the paraxial equation in rotation coordinates.

The highest order of the terms considered on the right hand side coincides with the order

of the aberrations computed. The equations (16) form a set of two linear inhomogeneous

di�erential equations of the second order, the solution of which can be found using

parameter variation method in case of parameterization by object position and directives

Q[k] =
h(z)

φ
∗ 1

2
o

z∫
zo

g(t)φ∗
1
2 (f2(Q[k−1],Q[k−1]′,Q[k−1]′′,t)+ f3(Q[k−1],Q[k−1]′,Q[k−1]′′,t)+ ··· ) dt (5.17)

− g(z)

φ
∗ 1

2
o

z∫
zo

h(t)φ∗
1
2 (f2(Q[k−1],Q[k−1]′,Q[k−1]′′,t)+ f3(Q[k−1],Q[k−1]′,Q[k−1]′′,t)+ ··· ) dt.

where Q[k−1] =Q[k−1](qo,q′o,z). In case of parameterization by position in the object and

aperture plane

Q[k] =
1

Wsoφ
∗ 1

2
o

t(z)

z∫
zo

sφ∗
1
2 (f2(Q[k−1],Q[k−1]′,Q[k−1]′′,α)+ f3(Q[k−1],Q[k−1]′,Q[k−1]′′,α)+ ··· ) dα

(5.18)

−s(z)

z∫
zo

tφ∗
1
2 (f2(Q[k−1],Q[k−1]′,Q[k−1]′′,α)+ f3(Q[k−1],Q[k−1]′,Q[k−1]′′,α)+ ··· ) dα

 .

where Q[k−1] =Q[k−1](Qo,Qa,z)

The procedure presented is commonly used; however, it is not easy to see which

terms on the right hand side have to be included and how many iteration steps must

be done to evaluate the solution exact up to k-th order. For this purposes we must

handle with trajectory equations more carefully. The best choice seems to introduce the

perturbation parameter λ using which the comparison of perturbation orders become

more transparent.

Let us suppose the solution in polynomial form

Q=Q1(Qo,Q′
o,z)+Q2(Qo,Q′

o,z)+Q3(Qo,Q′
o,z)+ ··· (5.19)
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where Qk(Qo,Q′
o,z) is k-th order homogeneous polynomial in Qo and Q′o. Similarly when

the parameterization by position in the object and aperture plane is used the solution

will be in form

Q=Q1(Qo,Qa,z)+Q2(Qo,Qa,z)+Q3(Qo,Qa,z)+ ··· (5.20)

and Qk(Qo,Qa,z) is k-th order homogeneous polynomial in Qo and Qa. Using the pertur-

bation parameter it can be rewritten into

Q(λ)=Q1 +λQ2 +λ2Q3 + ··· , (5.21)

which would be used in perturbation procedure. Comparing (19) and (21) one can

easily see that Q(λ=1) =Q. Similarly to (19) the right hand side of equation (2.7) must

be rewritten such that trajectory equation takes form

P̂1(Q(λ))= λf2 +λ2f3 + ··· (5.22)

where fk is kth order homogeneous polynomial in Qo and Q′o or Qo and Qa.

Let us now substitute (21) into the trajectory equation

P̂1(Q1 +λQ2 +λ2Q3 + ···) = (5.23)

=λf2(Q1+λQ2+···,Q′
1+λQ′

2+···,Q
′′
1 +λQ′′

2 +···,z)+λ2f3(Q1+···,Q′
1+···,Q

′′
1 +···,z)+ ··· .

Comparing zero-th order terms in λ one can �nd the paraxial trajectory equations

P̂1(Q1) =Q′′1 +
γφ′

2φ∗
Q′1 +

(
γφ′′

4φ∗2
+

η2B2

4φ∗
+

γ2F 2
1

8φ∗2

)
Q1 =0, (5.24)

while comparing the �rst order terms leads to equations determinating the second aber-

ration order

Q′′2 +
γφ′

2φ∗
Q′2 +

(
γφ′′

4φ∗2
+

η2B2

4φ∗
+

γ2F 2
1

8φ∗2

)
Q2 = f2(Q1,Q′

1,Q′′
1 ,z) . (5.25)

As on the right hand side there is only function of z (Q1 is the solution of the paraxial

approximation) the solution of (25) can be by parameter variation method evaluated

for case of parameterization by object position and directives in form

Q2 =h(z)φ∗−
1
2

o

z∫
zo

φ∗
1
2 g(t)f2(Q1,Q′

1,Q′′
1 ,t)dt−g(z)φ∗−

1
2

o

z∫
zo

φ∗
1
2 h(t)f2(Q1,Q′

1,Q′′
1 ,t)dt. (5.26)



5.3 The Eikonal Method 43

or in case of parameterization by position in the object object and aperture planes

Q2 =
1

Wsoφ
∗ 1

2
o

t(z)

z∫
zo

φ∗
1
2 s(α)f2(Q1,Q′

1,Q′′
1 ,α)dt−s(z)

z∫
zo

φ∗
1
2 t(α)f2(Q1,Q′

1,Q′′
1 α)dα


(5.27)

For computing of higher aberration orders one must compare the higher orders of λ,

e.g. the third aberration order is determined by the equations

P̂1(Q3) =
2∑

i=1

(
∂f2(Q1,Q′

1,Q′′
1 ,z)

∂Qi
Q2i +

∂f2(Q1,Q′
1,Q′′

1 ,z)
∂Q′

i

Q′
2i +

∂f2(Q1,Q′
1,Q′′

1 ,z)
∂Q′′

i

Q′′
2i

)
+ (5.28)

+ f3(Q1,Q′
1,Q′′

1 ,z)

The solution of the previous equations found by the trajectory method takes form similar

to (26) or (27).

Let us note that (26) and (27) comes more simply when the aberrations are expressed

in image plane, where g(zi) =M and h(zi) = 0, or s(zi) =M and t(zi) = 0. In such a case

they are simpli�ed to

Q2 =−Mφ
∗− 1

2
o

z∫
zo

φ∗
1
2 h(t)f2(Q1,Q1 ′,Q′′

1 ,t)dt (5.29)

or

Q2 =− M

Wsoφ
∗ 1

2
o

z∫
zo

φ∗
1
2 t(α)f2(Q1,Q′

1,Q′′
1 α)dα (5.30)

Using the previous procedure it is possible to compute the aberrations of any order;

moreover, by introducing the perturbation parameter the calculation becomes more

transparent compared to procedure based on (16).

5.3 The Eikonal Method

Introducing this method we get into the class of perturbation methods based on the

variational principles. In particular the eikonal method is special case of the Lagrangian

perturbation calculus. Thanks to its use in [1] the method is very familiar in electron

optics community. Let us start from Lagrangian formulation of the trajectory equations,
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namely from (2.15) where from here we will denote the integrand by M , i.e.

M =Φ∗
1
2 (1+q′2)

1
2 −η(Axx′+Ayy′+Az). (5.31)

The paraxial approximation is described by action

S
(0)
12 =

z2∫
z1

M2(q(0),q′(0),z)dz (5.32)

where M2 is the quadratic part of the Lagrangian (31). Varying such an action one can

�nd

δS
(0)
12 =

z2∫
z1

(
∂M2(q(0),q(0)′,z)

∂q(0)
− d

dz

∂M2(q(0),q(0)′,z)
∂q′(0)

)
δq(0)dz+p

(0)
2 δq

(0)
2 −p(0)

1 δq
(0)
1

(5.33)

where p(0) = ∂M2/∂q′. When we assume that q(0) ful�ls the paraxial equation of motion

∂M2(q(0),q(0)′,z)
∂q

− d
dz

∂M2(q(0),q(0)′,z)
∂q′

=0 , (5.34)

the equation reduces to

δS
(0)
12 =p

(0)
2 δq

(0)
2 −p(0)

1 δq
(0)
1 . (5.35)

However the intention here is to describe the situation when higher terms of the

Lagrangian are assumed. Let us consider that (31) can be expanded

M(q,q′,z) =M2(q,q′,z)+λM I(q,q′,z)+λ2M II(q,q′,z)+ ··· (5.36)

and the paraxial trajectory is changed to

q =q(0) +λq(1) +λ2q(2) + ··· , (5.37)

where parameter λ is perturbation parameter. One can �nd the variation of the action

S12 =

z2∫
z1

M(q,q′,z)dz (5.38)

either using method similar to deriving (35)

δS =p2δq2−p1δq1 =(p(0)
2 +λp

(1)
2 +λ2p

(2)
2 + ···) δ(q(0)

2 +λq
(1)
2 +λ2q

(2)
2 + ···)− (5.39)

−(p(0)
1 +λp

(1)
1 +λ2p

(2)
1 + ···) δ(q(0)

1 +λq
(1)
1 +λ2q

(2)
1 + ···)
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with p(1) = ∂M I/∂q′, p(2) = ∂M II/∂q′ etc., or varying the action (38) into which (36)

and (37) were substituted

S =

z2∫
z1

{M2(q(0)+λq(1)+λ2q(2)+···,q(0)′+λq(1)′+λ2q(2)′+···,z)+ (5.40)

+λM I(q(0)+λq(1)+λ2q(2)+···,q(0)′+λq(1)′+λ2q(2)′+···,z)+

+λ2M II(q(0)+λq(1)+λ2q(2)+···,q(0)′+λq(1)′+λ2q(2)′+···,z)+ ···
}
dz,

Let us note that from optical point of view S coincides with eikonal; hence, the name

of method.

The idea is to expand both (39) and (40) into powers of λ

S12 =S
(0)
12 +λS

(1)
12 +λ2S

(2)
12 + ··· (5.41a)

δS12 = δS
(0)
12 +λδS

(1)
12 +λ2δS

(2)
12 + ··· . (5.41b)

and from a comparison to �nd the q(i) and p(i). We will show the procedure on pertur-

bation of the �rst and second orders.

The First Order Perturbation

This perturbation is described by

S
(1)
12 =

z2∫
z1

(
M I(q(0),q(0)′,z)+

∂M2(q(0),q(0)′,z)
∂q

q(1) +
∂M2(q(0),q(0)′,z)

∂q′
q(1)′

)
(5.42)

which using the per-partes integration and paraxial equations of motion is reduced into

S
(1)
12 =SI

12(q
(0)
1 ,q

′(0)
1 ,z)+p

(0)
2 q

(1)
2 −p(0)

1 q
(1)
1 (5.43)

where

SI
12 =

z2∫
z1

M I(q(0),q(0)′,z)dz (5.44)

is given function of q1, p1 and z. The variation of (43) reads

δS
(1)
12 = δSI

12 +δp
(0)
2 q

(1)
2 +p

(0)
2 δq

(1)
2 −δp

(0)
1 q

(1)
1 −p(0)

1 δq
(1)
1 , (5.45)

on the other hand we can express the variation from (39)

δS
(1)
12 =p

(0)
2 δq

(1)
2 +p

(1)
2 δq

(0)
2 −p(0)

1 δq
(1)
1 −p(1)

1 δq
(0)
1 (5.46)
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and comparing the two previous equations one can �nd the �rst order perturbation

relation,

δSI
12 =p

(1)
2 δq

(0)
2 −p(1)

1 δq
(0)
1 −δp

(0)
2 q

(1)
2 +δp

(0)
1 q

(1)
1 . (5.47)

The relation is more general than we commonly need; hence, we may require for the

perturbed rays to ful�l some constraints. Two such cases are relevant. The �rst one

q
(1)
1 =p

(1)
1 =0 (5.48)

constrains the start position and impulses of perturbed rays with unperturbed ones. The

perturbed ray is then determined by its position and directives in z1. The �rst order

perturbation relation then reads

δSI
12 =p

(1)
2 δq

(0)
2 −q(1)

2 δp
(0)
2 , (5.49)

which leads to the set of equations

∂SI
12

∂q1
=

2∑
k=1

p
(1)
2k

∂q
(0)
2k

∂q1
−q

(1)
2k

∂p
(0)
2k

∂q1
(5.50a)

∂SI
12

∂p1
=

2∑
k=1

p
(1)
2k

∂q
(0)
2k

∂p1
−q

(1)
2k

∂p
(0)
2k

∂p1
, (5.50b)

which can be write in form ∂SI
12

∂q1
∂SI

12
∂p1

=MT
1

(
p

(1)
2

−q(1)
2

)
(5.51)

where M1 is a paraxial matrix in parameterization by qo and po. The coordinates q
(1)
2

and p
(1)
2 are easy to calculate,(

p
(1)
2

−q(1)
2

)
=(MT

1 )−1

∂SI
12

∂q1
∂SI

12
∂p1

 (5.52)

When the rotation coordinates are used at calculation the previous result can be sim-

pli�ed for stigmatic system to(
P

(1)
2

−Q(1)
2

)
=

 √
φ∗

φ∗o
h′1̂ −φ∗

1
2 g′1̂

−φ
∗− 1

2
o h1̂ g1̂

∂SI
12

∂Q1

∂SI
12

∂P1

 (5.53)
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Thus, in image plane, where h(zi) = 0 and g(zi) =M , we can write

Q
(1)
i =−M

∂SI
12

∂Po
(5.54)

The second reasonable choice of constraint reads

q
(1)
1 =q

(1)
2 =0 (5.55)

which means that the perturbed ray is determined by its positions in z1 and z2. The

�rst order perturbation relation then takes form

δSI
12 =p

(1)
2 δq

(0)
2 −p(1)

1 δq
(0)
1 . (5.56)

In practical computation the rays are determined by their position in the object and

aperture planes which means that the constraints take form

q(1)
o =q(1)

a =0 (5.57)

and the �rst order perturbation relations read

δSI
o2 =p

(1)
2 δq

(0)
2 −q(1)

2 δp
(0)
2 −p(1)

o δq(0)
o (5.58)

δSI
a2 =p

(1)
2 δq

(0)
2 −q(1)

2 δp
(0)
2 −p(1)

a δq(0)
a . (5.59)

The quantities p
(1)
2 and q

(1)
2 can be evaluated from the equations

∂SI
o2

∂qa
=

2∑
k=1

p
(1)
2k

∂q
(0)
2k

∂qa
−q

(1)
2k

∂p
(0)
2k

∂qa
(5.60a)

∂SI
a2

∂qo
=

2∑
k=1

p
(1)
2k

∂q
(0)
2k

∂qo
−q

(1)
2k

∂p
(0)
2k

∂qo
, (5.60b)

where the functions SI
o2 and SI

a2 were parameterized by positions in the object and

aperture plane SI
o2(qo,qa,z) and SI

a2(qo,qa,z). Similarly as in previous case(
∂SI

a2
∂qo

∂SI
12

∂qa

)
=MT

1

(
p

(1)
2

−q(1)
2

)
(5.61)

where M1 is a paraxial matrix in parameterization by qo and qa. For stigmatic system

in rotation coordinates one can �nd(
P

(1)
2

−Q(1)
2

)
=

1

Wsoφ
∗ 1

2
o

(
φ∗

1
2 t′1̂ −φ∗

1
2 s′1̂

−t1̂ s1̂

)(
∂SI

a2
∂Qo

∂SI
12

∂Qa

)
(5.62)
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where Ws = st′−s′t is Wronskian (4.19). Thus, in image plane, where t(zi)= 0 and

s(zi) =M , we can write

Q
(1)
i =− M

φ
∗ 1

2
o Wso

∂SI
o2

∂Qa
. (5.63)

The Second Order Perturbation

This perturbation order is described by the part of the action

S
(2)
12 =

z2∫
z1

{
M II(q(0),q(0),z)+

∂M I(q(0),q(0)′,z)
∂q

q(1) +
∂M I(q(0),q(0)′,z)

∂q′
q(1)′ +

+
∂M2(q(0),q(0)′,z)

∂q
q(2) +

∂M2(q(0),q(0)′,z)
∂q′

q(2)′+
1
2

∑
i,j

(
∂2M2(q(0),q(0)′,z)

∂qi∂qi
q
(1)
i q

(1)
j

+2
∂2M2(q(0),q(0)′,z)

∂qi∂q′j
q
(1)
i q

(1)′
j +

∂2M2(q(0),q(0)′,z)
∂q′i∂q′j

q
(1)′
i q

(1)′
j

)}
dz . (5.64)

Similarly to the �rst order perturbation by use of equation of motion we can write

z2∫
z1

(
∂M2(q(0),q(0)′,z)

∂q
q(2) +

∂M2(q(0),q(0)′,z)
∂q′

q(2)′
)

dz =p
(0)
2 q

(2)
2 −p(0)

1 q
(2)
1 . (5.65)

S
(2)
12 can be also simpli�ed using

z2∫
z1

(
q(1) ∂M

∂q
+q(1)′ ∂M

∂q′

)
dz =q

(1)
2 p2−q(1)

1 p1 (5.66)

where the left hand side can be expanded into powers of the perturbation parameter λ

z2∫
z1

(
q(1) ∂M2

∂q
+q(1)′ ∂M2

∂q′

)
dz+λ

 z2∫
z1

(
qI ∂M I

∂q
+q(1)′ ∂M I

∂q′

)
dz + (5.67)

+

z2∫
z1

∑
i,j

(
q
(1)
i q

(1)
j

∂2M2

∂qi∂qj
+2q

(1)
i q

(1)′
j

∂2M2

∂qi∂q′j
+q

(1)′
i q

(1)′
j

∂2M2

∂q′i∂q′j

)
dz

+o(λ2)

and the right hand side to

q
(1)
2 p2−q(1)

1 p1 =q
(1)
2 p

(0)
2 −q(1)

1 p
(0)
1 +λ(q(1)

2 p
(1)
2 −q(1)

1 p
(1)
1 )+o(λ2) (5.68)
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When we compare linear terms in λ we get

z2∫
z1

(
q(1) ∂M2

∂q
+q(1)′ ∂M2

∂q′

)
dz = (5.69)

−
z2∫

z1

∑
i,j

(
q
(1)
i q

(1)
j

∂2M2

∂qi∂qj
+2q

(1)
i q

(1)′
j

∂2M2

∂qi∂q′j
+q

(1)′
i q

(1)′
j

∂2M2

∂q′i∂q′j

)
dz+q

(1)
2 p

(1)
2 −q(1)

1 p
(1)
1

Hence,

S
(2)
12 =SII

12 +p
(0)
2 q

(2)
2 −p(0)

1 q
(2)
1 +p

(1)
2 q

(1)
2 −p(1)

1 q
(1)
1 (5.70)

where the second order characteristic function

SII
12 =

z2∫
z1

M II(q(0),q(0),z)− 1
2

∑
i,j

(
∂2M2(q(0),q(0)′,z)

∂qi∂qj
q
(1)
i q

(1)
j + (5.71)

+2
∂2M2(q(0),q(0)′,z)

∂qi∂q′j
q
(1)
i q

(1)′
j +

∂2M2(q(0),q(0)′,z)
∂q′i∂q′j

q
(1)′
i q

(1)′
j

)}
dz

depends either on z and values of q and q′ in z1, or on z and positions of ray in the

object and aperture planes similarly to the second and third term on the left hand side

while on the right hand side one can �nd the qualities which have to be computed.

Varying (64) and comparing with the expansion of (39) one can �nd the second order

perturbation relation

δSII
12 −q

(1)
2 δp

(1)
2 +q

(1)
1 δp

(1)
1 =p

(2)
2 δq

(0)
2 −p(2)

1 δq
(0)
1 −q(2)

2 δp
(0)
2 +q

(2)
1 δp

(0)
1 (5.72)

Using procedure similar to the �rst order perturbation two perturbation relations

can be found. The �rst one for rays determined by the position and directives in the

object plane

δSII
12 −q

(1)
2 δp

(1)
2 =p

(2)
2 δq

(0)
2 −q(2)

2 δp
(0)
2 (5.73)

which leads to the set of the equations

∂SII
12

∂q1
−

2∑
k=1

q
(1)
2k

∂p
(1)
2k

∂q1
=

2∑
k=1

p
(2)
2k

∂q
(0)
2k

∂q1
−q

(2)
2k

∂p
(0)
2k

∂q1
(5.74a)

∂SII
12

∂p1
−

2∑
k=1

q
(1)
2k

∂p
(1)
2k

∂p1
=

2∑
k=1

p
(2)
2k

∂q
(0)
2k

∂p1
−q

(2)
2k

∂p
(0)
2k

∂p1
. (5.74b)
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Similarly as in the �rst order perturbation it takes form∂SII
12

∂q1
−
∑2

k=1q
(1)
2k

∂p
(1)
2k

∂q1

∂SII
12

∂p1
−
∑2

k=1q
(1)
2k

∂p
(1)
2k

∂p1

=MT
1

(
p

(2)
2

−q(2)
2

)
(5.75)

hence, (
p

(2)
2

−q(2)
2

)
=(M−1

1 )T

∂SII
12

∂q1
−
∑2

k=1q
(1)
2k

∂p
(1)
2k

∂q1

∂SII
12

∂p1
−
∑2

k=1q
(1)
2k

∂p
(1)
2k

∂p1

 (5.76)

and for stigmatic system in rotation coordinates in the image plane one can write

Q
(2)
i =−M

(
∂SII

oi

∂Po
−

2∑
k=1

Q
(1)
ik

∂P
(1)
ik

∂Po

)
(5.77)

The second perturbation relation for rays determined by the positions in the object

and aperture planes reads

δSII
o2 −q

(1)
2 δp

(1)
2 =p

(2)
2 δq

(0)
2 −q(2)

2 δp
(0)
2 −p(2)

o δp(0)
o (5.78a)

δSII
a2−q

(1)
2 δp

(1)
2 =p

(2)
2 δq

(0)
2 −q(2)

2 δp
(0)
2 +q(2)

a δp(0)
a (5.78b)

which leads to the set of equations

∂SII
o2

∂qa
−

2∑
k=1

q
(1)
2k

∂p
(1)
2k

∂qa
=

2∑
k=1

p
(2)
2k

∂q
(0)
2k

∂qa
−q

(2)
2k

∂p
(0)
2k

∂qa
(5.79a)

∂SI
a2

∂qa
−

2∑
k=1

q
(1)
2k

∂p
(1)
2k

∂qa
=

2∑
k=1

p
(2)
2k

∂q
(0)
2k

∂qa
−q

(2)
2k

∂p
(0)
2k

∂qa
. (5.79b)

Using the similar procedure as in previous case we can �nd for aberration in image plane

Q
(2)
i =− M

φ
∗ 1

2
o Wso

(
∂SII

oi

∂Qa
−

2∑
k=1

Q
(1)
ik

∂P
(1)
ik

∂Qa

)
(5.80)

5.4 The Lie Algebra Method

The name of the method comes from the mathematical structure used. It is based

on the Poisson brackets which form the Lie algebra structure on the phase space and

canonical perturbation theory [13]. It is used in electron optics [3] and beam dynamics

[5, 14, 18, 25]. The great advance of the method was found at description of stability of

Hamiltonian systems [19, 20, 6].
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We use the standard notation

[f,g] =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
(5.81)

for the Poisson brackets of two functions. It is easy to see that the equations of motion

can be written consistently in form

w ′= [w ,H] (5.82)

where w is vector in the phase space

w =

(
q

p

)
(5.83)

By direct calculation one can easily proof the Lie algebra structure of the phase

space generated by the Poisson bracket,

[f,αg+βh] = α[f,g]+β[g,h] � linearity (5.84a)

[f,g] =−[g,f ] � antisymmetry (5.84b)

[f,[g,h]]+[h,[f,g]]+[g,[h,f ]] = 0 � Jacobi identity (5.84c)

As the Poisson brackets exist for all di�erentiable functions, using this operation it

is possible to assign the linear operator to every such a function,

f →: f :, : f : g = [f,g], (5.85)

let as call it Lie operator. The linearity is the direct consequence of (84a)

: f : (αg+βh) =α : f : g+β : f :h (5.86)

and the Lie identity causes that it acts as derivative on the algebra of functions with

product represented by the Poisson brackets,

: f : [g,h] = [: f : g,h]+[g,: f :h]. (5.87)

The similar property also can be found for the algebra of functions where the product

is represented by the standard product of function [11],

: f : gh =(: f : g)h+g : f :h . (5.88)
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All of these properties have great consequences mentioned later.

The Lie algebra method is based on the canonical transformations. The standard

description of canonical transformation uses the generating function in which the new

and original coordinates are mixed [10], i.e.

~q =
∂F (~p,q,z)

∂~p
, p=

∂F (~p,q,z)
∂q

. (5.89)

But for the purposes of the perturbation theory the description via transformation

using only original coordinates is more advisable. It is possible to do so by use of the

Lie transformations which are de�ned as the exponential of the Lie operator, ie.

w(~w ,z) = e:g(~w ,z):~w (5.90)

where

e:g: = 1̂+ : g : +
1
2

: g :2 +
1
3!

: g :3 +··· . (5.91)

It can be shown [11] that validity of (87) provides such a transformation canonical i.e.

e:g:[f,h] = [e:g:f,e:g:h] . (5.92)

Moreover, (88) causes that all analytical functions are transformed via

f̃(~q,~p,z) = f(q(~q,~p,z),p(~q,~p,z),z)= e:g(~q,~p,z):f(~q,~p,z) (5.93)

Unfortunately the situation for the Hamiltonian di�ers a little because the transfor-

mation rule for Hamiltonian di�ers from the transformation rule of functions [10], one

can �nd its form for the Lie transformation [12], see also appendix,

H̃(~q,~p,z)= e:g(~q,~p,z):H(~q,~p,z)+

1∫
0

eθ:g(~q,~p,z): ∂g

∂z
dθ (5.94)

The knowledge extent introduced su�ces to explain the Lie algebra method.

In fact this method is just modi�cation of the canonical perturbation methods used

in the classical mechanics [15]. Similarly to the Hamilton � Jacobi theory it is based

on the fact that the motion is the canonical transformation which compensates the

Hamiltonian. But on contrary to the Hamilton � Jacobi theory the Hamiltonian is not
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compensated using one transformation but it is compensated term by term. Four our

case, when the Hamiltonian is easily expanded into polynomial in canonical variables

H =H2 +H3 +H4 + ··· , (5.95)

it is natural to �nd such a sequence of the canonical transformations which compensate

the Hamiltonian order by order. Let us say that the canonical transformation Mk

transforms the system with Hamiltonian (95) into system with Hamiltonian

H =Hk+2 +Hk+3 + ··· (5.96)

the equations of motion then takes form

d
dz

~w = [~w ,H] = fk+1 + fk+2 + ··· , (5.97)

i.e. the lowest order of terms on the right hand side is k+1. The physical meaning of

Mk rises from the fact that the solution of such equations can be evaluated in form

~w = ~wo +gk+1(~wo,z)+gk+2(~wo,z)+ ··· (5.98)

hence, there is no evolution up to k-th order present. If we do not include terms of

higher orders then k into calculations, the evolution described in the previous equation

is approximated by identity, ie. ~w = ~wo and the canonical transformation ~w =Mk ~wo

completely describes the evolution up to k-th order. Before we present the procedure

for �nding such a transformation let us mention a property advisable at comparing of

polynomial orders.

If one evaluates the Poisson bracket of two homogeneous polynomials of k-th and l-th

order respectively the result emerges as the homogeneous polynomial of (k+ l−2)− th

order, i.e.

[gk,gl] = hk+l−2 . (5.99)

The proof directly raises from the de�nition of Poisson bracket which consists from

multiplication and two derivatives.

The procedure starts by compensation of the quadratic part of the Hamiltonian, it is

equivalent to solution of the paraxial approximation. We can use two approaches here,

the �rst is to use parameterization with initial position and momentum. The canonical



54 5 THE ANALYTIC PERTURBATION METHOD

transformation representing such a transformation is described by the linear map (4.28)

w =M1~w =

(
R̂−1 0

0 e
η R̂−1

) g(z)1̂ φ
∗− 1

2
o h(z)1̂

φ∗
1
2 g′(z)1̂

√
φ∗

φ∗o
h′(z)1̂

 ~w (5.100)

and the new Hamiltonian � the interaction Hamiltonian � reads

H int =
η

e
(H3(w(~w ,z),z)+H4(w(~w ,z),z)+ ···)= H int

3 (~w ,z)+H int
4 (~w ,z)+ ··· . (5.101)

In the second approach we determine the rays by their position in the object and

aperture plane. Such a transformation is the extended canonical transformation ex-

pressed in the rotation coordinates(
Q

P

)
=

(
s1̂ t1̂

s′φ∗
1
2 1̂ t′φ∗

1
2 1̂

)(
~Q

~P

)
(5.102)

where ~P corresponds to Qa, which represent the generalized momentum. The interaction

Hamiltonian in this case reads

H int =
η

eφ
∗ 1

2
o Wso

(H3(w(~w ,z),z)+H4(w(~w ,z),z)+ ···)= H int
3 (~w ,z)+H int

4 (~w ,z)+ ··· .

(5.103)

where Ws = s(zo)t′(zo)− t(zo)s′(zo) is the Wronskian (4.19) The following procedure

does not depend on the type of paraxial approximation used; therefore we will use the

same notation for both approaches.

Now we will �nd the canonical transformation compensating the third order part

of interaction Hamiltonian. Let us assume that it takes form ~w = e:g3(w
[1],z):w [1] which

transforms the Hamiltonian into

H [1](w [1],z) = e:g3(w
[1],z):H int(w [1],z)+

1∫
0

eθ:g3(w
(1),z): ∂g3

∂z
dθ (5.104)

Moreover, we require for the transformed Hamiltonian not to include the third order

part, i.e.

H [1](w [1],z) =H
[1]
4 (w [1],z)+H

[1]
5 (w [1],z)+ ··· . (5.105)

Comparing terms of the third order on the right hand side of (104) and (105) one can

�nd

H int
3 +

∂g3

∂z
=0 , (5.106)
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the solution of which

g3 =−
z∫

zo

H int
3 (w [1],z)dz . (5.107)

completely describes the sought for canonical transformation. Such a transformation

together with M1 describe the system up to the second aberration order

w(2)(z) =M2w
[1] =M1e

:g3(w
[1],z):w [1] . (5.108)

and when we neglect the evolution of the third and higher orders w [1] =wo we can write

w(2)(z) =M2wo =M1e
:g3(wo,z):wo . (5.109)

Explicitly for stigmatic system in rotation coordinates it takes form(
Q(2)

P(2)

)
=

 g(z)1̂ φ
∗− 1

2
o h(z)1̂

φ∗
1
2 g′(z)1̂

√
φ∗

φ∗o
h′(z)1̂

(Qo− ∂g3
∂Po

Po + ∂g3
∂Qo

)
(5.110)

and in the image plane one can write

Q(2) =M

(
Qo−

∂g3

∂Po

)
(5.111)

When we use aperture position instead of initial momentum(
Q(2)

P(2)

)
=

(
s(z)1̂ t(z)1̂

φ∗
1
2 s′(z)1̂ φ∗

1
2 t′(z)1̂

)(
Qo− ∂g3

∂Qa

Qa + ∂g3
∂Qo

)
(5.112)

which reduces to

Q(2) =M

(
Qo−

∂g3

∂Qa

)
(5.113)

in the image plane.

Using (104) one can evaluate the transformed Hamiltonian

H
[1]
4 =H int

4 − 1
2

z∫
zo

dz1[H int
3 (w [1],z1),H int

3 (w [1],z)] (5.114)

H
[1]
5 =H int

5 −
z∫

zo

dz1[H int
3 (w [1],z1),H int

4 (w [1],z)]+ (5.115)

+
1
3

z∫
zo

z∫
zo

[H int
3 (w [1],t),[H int

3 (w [1],s),H int
3 (w [1],z)]]
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The previous procedure can be used to �nd the canonical transformation

w [1](w [2],z) = e:g4(w
[2],z):w [2]

that compensates the fourth order part of the Hamiltonian,

H [2] = e:g4(w
[2],z):H [1](w [2],z)+

1∫
0

eθ:g4(w
[2],z): ∂g4(w [2],z)

∂z
dθ (5.116a)

H [2] =H
[2]
5 +H

[2]
6 + ··· . (5.116b)

Comparing terms of the fourth order and solving di�erential equation one can �nd

g4 =−
z∫

zo

H
[1]
4 (w [2],z)dz (5.117)

=−
z∫

zo

H int
4 (w [2],z)dz+

1
2

z∫
zo

dz1

z2∫
zo

dz1[H int
3 (w [2],z1),H int

3 (w [2],z2)] .

The transformed Hamiltonian is determined by (116a) and the canonical transformation

to interaction coordinates ~w =M̃3w
[2] reads

M̃3 = e:g3(w
[1],z):e:g4(w

[2],z): = e:g4(w
[2],z):e:g3(w

[2],z): (5.118)

The rays are then described up to the third aberration order by canonical transformation

w(3) =M1e
:g4:e:g3:wo . (5.119)

which for stigmatic systems in rotation coordinates takes(
Q(3)

P(3)

)
=

 g(z)1̂ φ
∗− 1

2
o h(z)1̂

φ∗
1
2 (z)g′1̂

√
φ∗

φ∗o
h′(z)1̂

(Qo− ∂g3
∂Po

− ∂g4
∂Po

− [g3,
∂g3
∂Po

]

Po + ∂g3
∂Qo

+ ∂g4
∂Qo

+[g3,
∂g3
∂Qo

]

)
(5.120)

and when the aperture position instead o initial momentum is used(
Q(3)

P(3)

)
=

(
s(z)1̂ t(z)1̂

φ∗
1
2 s′(z)1̂ φ∗

1
2 t′(z)1̂

)(
Qo− ∂g3

∂Qa
− ∂g4

∂Qa
− [g3,

∂g3
∂Qa

]

Qa + ∂g3
∂Qo

+ ∂g4
∂Qo

+[g3,
∂g3
∂Qo

]

)
(5.121)

Applying this procedure to higher order terms it is possible to �nd the canonical

transformation which compensates the Hamiltonian up to given order, let us say the kth

M̃k−1 = e:gk(~w ,z):e:gk−1(~w ,z): ···e:g3(~w ,z): . (5.122)

The evolution in original coordinates can be then evaluated as

w(k−1) =M1M̃k−1wo . (5.123)



5.5 Dispersion and Chromatic Aberration 57

5.5 Dispersion and Chromatic Aberration

So far we were describing the perturbation methods for the system in which the electrons

have the same energy. Let us � abandoning this assumption � focus to the cases when

the energy of electrons di�ers. In this subsection the changes and modi�cations of the

perturbation methods invoked by this extension will be presented.

The Trajectory Method

From (2.7) and (4.34a) it is clear that the additional dimension changes the trajectory

equations to

P̂1(Q)+
F1

4eφ∗7/4

(
−cosΘ

sinΘ

)
δ = f2(δ,Q,Q′,Q′′,z)+ f3(δ,Q,Q′,Q′′,z)+ ··· (5.124a)

δ =const. (5.124b)

where terms fk(δ,Q,Q′,Q′′,z) on the right hand side represent the k-th order homoge-

neous polynomial in variables δ, Q, Q′ and Q′′ with z dependent coe�cients.

According to procedure used in monochromatic case using the perturbation para-

meter λ one can �nd

P̂1(Q1 +λQ2 +λ2Q3 + ···)+
F1

4eφ∗7/4

(
−cosΘ

sinΘ

)
δ =

=λf2(δ,Q1+λQ2+···,Q′
1+λQ′

2+···,Q
′′
1 +λQ′′

2 +···,z)+λ2f3(δ,Q1+···,Q′
1+···,Q

′′
1 +···,z)

from which comparing of each order in λ it is possible to �nd equations that determine

all Q(i), e.q.

P̂1(Q1) =− F1

4eφ∗
7
4

(
−cos(Θ)

sin(Θ)

)
δ (5.125a)

P̂1(Q2) = f2(δ,Q1,Q′
1,Q′′

1 ,z) (5.125b)

P̂1(Q3) =
∂f2(δ,Q1,Q′

1,Q′′
1 ,z)

∂Qi
Q2i +

∂f2(δ,Q1,Q′
1,Q′′

1 ,z)
∂Q′

i

Q′
2i +

∂f2(δ,Q1,Q′
1,Q′′

1 ,z)
∂Q′′

i

Q′′
2i+ (5.125c)

+ f3(δ,Q1,Q′
1,Q′′

1 ,z)

...

The following procedure will be analogical to procedure mentioned in subsection (4.1).
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The Lie Algebra Method

For description of the dispersion case the phase space must include two more canonical

conjugate variables τ and pτ , therefore the Poisson brackets read

[f,g] ==
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
+

∂f

∂τ

∂g

∂pτ
− ∂f

∂pτ

∂g

∂τ
(5.126)

The de�nition and properties of Lie operator and Lie transform remain unchanged

except that Poisson brackets and the phase space change themselves.

Hence, the Hamiltonian must include variable pτ and its expansion will take form

H(q,p,pτ ,z) =H2(q,p,pτ ,z)+H3(q,p,pτ ,z)+H4(q,p,pτ ,z)+ ··· . (5.127)

Moreover, if the dipole �elds represented by coe�cient F1 are presented the paraxial

approximation takes form

M1 =


R̂−1 0̂ 0

0̂ e
η R̂−1 0

0 0 1




g1̂ φ
∗− 1

2
0 1̂ 0

φ∗
1
2 g′1̂

√
φ∗

φ∗0
h′1̂ 0

0 0 1




1 0 0 0 2mcηµ̂(h)

0 1 0 0 2mcην̂(h)

0 0 1 0 −2mcηµ̂(g)

0 0 0 1 −2mcην̂(g)

0 0 0 0 1


which causes the change of the interaction coordinates

q

p

pτ

=M1


~q

~p

p̃τ

 (5.128)

and the interaction Hamiltonian as well. The rest of the procedure remains un-

changed.

The Di�erential Algebra Method

Besides the image position and directives the particles trajectories are determined by

their energy deviation δ, if one supposes the dispersion case. For this method it causes

the di�erential algebraic basis to include other elements. The general basis elements

then read

|l1,l2,l3,l4,d〉=X l1Y l2P l3
x P l4

y P d
τ (5.129)
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and as Pτ remains constant along each ray i.e. P ′
τ =0, the derivative of general di�er-

ential algebraic element takes form

d
dz
|l1,l2,l3,l4,d〉=−[H2 +H3 +H4 + ··· ,|l1,l2,l3,l4,d〉] . (5.130)

In this case one can �nd
(
5+k

k

)
−1 linear di�erential equations of the �rst order which

determine the solution up to the kth order. The procedure that follows is analogous to

the monochromatic case.

5.6 Example: Round Magnetic Lens

The round magnetic lens is the base element of the most of electron microscopes. Our

intention is to show the application of perturbation methods described above rather

than to describe the physical properties of the lens. First we show the calculation using

the eikonal method and the Lie algebra method. The trajectory method will be applied

at the end. We skip the di�erential algebra method, because it is not appropriate for

analytic calculation of aberrations. We will compare the results of all these methods.

The magnetic axial symmetric �eld is determined by one function - the axial �ux

density B(z). We will use the following expansion of the vector potential

Ax =−1
2
yB(z)+

1
16

y(x2 +y2)B′′(z) (5.131a)

Ay =
1
2
xB(z)− 1

16
x(x2 +y2)B′′(z) (5.131b)

Az =0 (5.131c)

The paraxial equation of the system has been studied, so we start to calculate the

aberration.

The eikonal method

The Lagrangian of the system up to the fourth order reads

M =M2 +M4

where

M2 =
1
2
φ∗

1
2 q′2− 1

2
ηB(z)(xy′−x′y) (5.132)

M4 =−1
8
φ∗

1
2 (q′2)2 +

1
16

ηB′′(xy′−x′y)q2 (5.133)
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hence, the third order Lagrangian is not present in the system. We will solve the problem

in rotation coordinates, where the Lagrangian reads

M2 =
1
2
φ∗

1
2Q′2− η2B2(z)

8φ∗
1
2

Q2 (5.134)

M4 =− 1
4
L1(Q2)2− 1

2
L2Q

2Q′2− 1
4
L3(Q′2)2−R(XY ′−X ′Y )2 (5.135)

−CPQ
2(XY ′−X ′Y )−CQQ

′2(XY ′−X ′Y )

with the coe�cients de�ned:

L1 =
η4B4

32φ∗
3
2
− η2

8φ∗
1
2
BB′′ (5.136a)

L2 =
η2B2

8φ∗
1
2

(5.136b)

L3 =
1
2
φ∗

1
2 (5.136c)

R =
η2B2

8φ∗
1
2

(5.136d)

CQ =
1
4
ηB (5.136e)

CP =
η3B3

16φ∗
− ηB′′

16
(5.136f)

When we use the paraxial approximation in parameterization with coordinate and

momentum in the object plane after substitution (4.27) for Q and Q′ and using L2
z =

Q2P 2−(QP )2 we get
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M̃4 =− 1
4
φ∗−2(L1h

4 +2L2h
2h′2 +L3h

′4)(P 2
o )2− (5.137)

−φ∗−
3
2 (L1gh3 +L2hh′(gh)′+L3g

′h′3)P 2
o (QoPo)−

−φ∗−1(L1g
2h2 +2L2ghg′h′+L3g

′2h′2−R)(QoPo)2−

− 1
2
φ∗−1(L1g

2h2 +L2(g′2h2 +g2h′2)+L3g
′2h′2 +2R)Q2

oP
2
o−

−φ∗−
1
2 (L1hg3 +L2gg′(hg)′+L3h

′g′3)Q2
o(QoPo)−

− 1
4
(L1g

4 +2L2g
2g′2 +L3g

′4)(Q2
o)

2−

−φ∗−
3
2 (CQh′2 +CP h2)P 2

o Lz−2φ∗−1(CQg′h′+CP gh)QoPoLz−

−φ∗
1
2 (CQg′2 +CP g2)Q2

oLz

Let us mention that because there is no electric �eld in the system, ie. φ∗=φ∗o, the

Wronskian remains constant

gh′−g′h = g(zo)h′(zo)−g′(zo)h(zo)= 1 (5.138a)

st′−s′t = s(zo)t′(zo)−s′(zo)t(zo) =Wso (5.138b)

When we introduce notation

C =φ∗−
1
2

z∫
zo

(L1h
4 +2L2h

2h′2 +L3h
′4)dz (5.139a)

K =φ∗−
1
2

z∫
zo

(L1gh3 +L2hh′(gh)′+L3g
′h′3)dz (5.139b)

A =φ∗−
1
2

z∫
zo

(L1g
2h2 +2L2ghg′h′+L3g

′2h′2−R)dz (5.139c)

F =φ∗−
1
2

z∫
zo

(L1g
2h2 +L2(g′2h2 +g2h′2)+L3g

′2h′2 +2R)dz (5.139d)

D =φ∗−
1
2

z∫
zo

(L1hg3 +L2gg′(hg)′+L3h
′g′3)dz (5.139e)

E =φ∗−
1
2

z∫
zo

(L1g
4 +2L2g

2g′2 +L3g
′4)dz (5.139f)
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k =φ∗−
1
2

z∫
zo

(CQh′2 +CP h2)dz (5.140a)

a=φ∗−
1
2

z∫
zo

(CQg′h′+CP gh)dz (5.140b)

d =φ∗−
1
2

z∫
zo

(CQg′2 +CP g2)dz (5.140c)

the action takes form

SI
oi =−1

4
φ∗−

3
2 C(P 2

o )2−φ∗−1KP 2
o (QoPo)−φ∗−

1
2 A(QoPo)2−

1
2
φ∗−

1
2 FQ2

oP
2
o (5.141)

−DQ2
o(QoPo)−

1
4
φ∗

1
2 E(Q2

o)
2−φ∗−1kP 2

o Lz−2φ∗−
1
2 aQoPoLz−dQ2

oLz

and using (54) the perturbation in the image plane reads

Q
(1)
i =M

(
φ∗−

3
2 CP 2

o Po +φ∗−1K(P 2
oQo +2(QoPo)Po)+2φ∗−

1
2 A(QoPo)Qo+ (5.142)

+φ∗−
1
2 FQ2

oPo +DQ2
oQo +kφ∗−1(2LzPo−P 2

o Ĵ2Qo)+

+2a φ∗−
1
2 (LzQo−(QoPo)Ĵ2Qo)−dQ2

oĴ2Qo

)
where

Ĵ2 =

(
0 1

−1 0

)
(5.143)

and when we use Po =φ∗
1
2Q′o,

Q(1) =M
(
CQ′2o Q

′
o +K(Q′2o Qo +2(QoQ

′
o)Q

′
o)+2A(QoQ

′
o)Qo +FQ2

oQ
′
o +DQ2

oQo

+k(2KzQ
′
o−Q′2o Ĵ2Qo)+2a(KzQo−(QoQ

′
o)Ĵ2Qo)−dQ2

oĴ2Qo

)
(5.144)

where Kz =XoY
′
o−YoX

′
o.
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In case of parameterization with position in the object and aperture plane we will

proceed similarly

M̃4 =− 1
4
(L1t

4 +2L2t
2t′2 +L3t

′4)(Q2
a)2−(L1st

3 +L2tt
′(st)′+L3s

′t′3)Q2
a(QoQa)

−(L1s
2t2 +2L2sts

′t′+L3s
′2t′2−RW 2

s )(QoQa)2−

− 1
2
(L1s

2t2 +L2(s′2t2 +s2t′2)+L3s
′2t′2 +2RW 2

s )Q2
oQ

2
a−

−(L1ts
3 +L2ss

′(ts)′+L3t
′s′3)Q2

o(QoQa)− 1
4
(L1s

4 +2L2s
2s′2 +L3s

′4)(Q2
o)

2−

−Ws(CQt′2 +CP t2)Q2
aLz−2Ws(CQs′t′+CP st)QoQaLz−

−Ws(CQs′2 +CP s2)Q2
oLz (5.145)

where now Lz =XoYa−XaYo. Using coe�cients

C =φ∗−
1
2 W−1

s

z∫
zo

(L1t
4 +2L2t

2t′2 +L3t
′4)dz (5.146a)

K =φ∗−
1
2 W−1

s

z∫
zo

(L1st
3 +L2tt

′(st)′+L3s
′t′3)dz (5.146b)

A =φ∗−
1
2 W−1

s

z∫
zo

(L1s
2t2 +2L2sts

′t′+L3s
′2t′2−RW 2

s )dz (5.146c)

F =φ∗−
1
2 W−1

s

z∫
zo

(L1s
2t2 +L2(s′2t2 +s2t′2)+L3s

′2t′2 +2RW 2
s )dz (5.146d)

D =φ∗−
1
2 W−1

s

z∫
zo

(L1ts
3 +L2ss

′(ts)′+L3t
′s′3)dz (5.146e)

E =φ∗−
1
2 W−1

s

z∫
zo

(L1s
4 +2L2s

2s′2 +L3s
′4)dz (5.146f)
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k =φ∗−
1
2

z∫
zo

(CQt′2 +CP t2)dz (5.147a)

a=φ∗−
1
2

z∫
zo

(CQs′t′+CP st)dz (5.147b)

d =φ∗−
1
2

z∫
zo

(CQs′2 +CP s2)dz (5.147c)

the action takes form

SI
oi =− C

4
(Q2

a)2−KQ2
a(QoQa)−A(QoQa)2− F

2
Q2

oQ
2
a−DQ2

o(QoQa)− E

4
(Q2

o)
2

−kQ2
aLz−2aQoQaLz−dQ2

oLz (5.148)

and using (63) one gets

Q(1) =M
(
CQ2

aQa +KQ2
aQo +2(QoQa)Qa +2A(QoQa)Qo +FQ2

oQa +DQ2
oQo+

+k(2LzQa−Q2
aĴ2Qo)+2a(LzQo−(QoQa)Ĵ2Qo)−dQ2

oĴ2Qo

)
(5.149)

The Lie algebra method

The Hamiltonian up to the fourth order takes form

H =H2 +H4 (5.150)

where

H2 =
η

2eφ∗
1
2
p2 +

ηB

2φ∗
1
2
Lz +

ηeB2

4φ∗
1
2
q2 (5.151)

H4 =
η3

8e3φ∗
3
2
(p2)2 +

η3B2

16eφ∗
3
2
p2q2 +

(
eη3

128φ∗
3
2
B4− eη

32φ∗
1
2
BB′′

)
(q2)2 +

η3B2

8eφ∗
3
2

L2
z

+
(

η3B3

16φ∗
3
2
− ηB′′

16φ∗
1
2

)
Lzq

2 +
η3B

4e2φ∗
3
2
Lzp

2 (5.152)

which in rotation coordinates takes form

H2 =
P 2

2φ∗
1
2

+
η2B2

8φ∗
1
2
Q2 (5.153)

H4 =
1
4
L1(Q2)2 +

1
2
φ∗−1L2Q

2P 2 +
1
4
φ∗−2L3(P 2)2−φ∗−1RL2

z (5.154)

+φ∗−
1
2 CPQ

2Lz +φ∗−
3
2 CQP

2Lz



5.6 Example: Round Magnetic Lens 65

In case of parameterization with coordinates and momentum in the object plane the

interaction Hamiltonian can be calculated using

H int
4 =H4(Q(~Q,~P ),P (~Q,~P )) (5.155)

where the transformation (Q,P )→ (~Q,~P ) is paraxial approximation described in (4.27);

hence,

H int
4 =

1
4
φ∗−2(L1h

4 +2L2h
2h′2 +L3h

′4)(~P 2)2+ (5.156)

+φ∗−
3
2 (L1gh3 +L2hh′(gh)′+L3g

′h′3)~P 2(~Q~P )+

+φ∗−1(L1g
2h2 +2L2ghg′h′+L3g

′2h′2−R)(~Q~P )2+

+
1
2
φ∗−1(L1g

2h2 +L2(g′2h2 +g2h′2)+L3g
′2h′2 +2R)~Q2~P 2+

+φ∗−
1
2 (L1hg3 +L2gg′(hg)′+L3h

′g′3)~Q2(~Q~P )+

+
1
4
(L1g

4 +2L2g
2g′2 +L3g

′4)(~Q2)2+

+φ∗−
3
2 (CQh′2 +CP h2)~P 2Lz +2φ∗−1(CQg′h′+CP gh)~Q~PLz+

+φ∗
1
2 (CQg′2 +CP g2)~Q2Lz

where we used L2
z =p2q2−(qp)2. Using (107, 114 and 118) we can write

g3 =0 (5.157)

g4 =−
∫ z

zo

H int
4 (Q[2],P [2],z)dz (5.158)

ie.

g4 =− 1
4
φ∗−

3
2 C(P [2]2)2−φ∗−1KP [2]2(Q[2]P [2])−φ∗−

1
2 A(Q[2]P [2])2− 1

2
φ∗−

1
2 FQ[2]2P [2]2

−DQ[2]2(Q[2]P [2])− 1
4
φ∗

1
2 E(Q[2]2)2−φ∗−1kP [2]2Lz−2φ∗−

1
2 aQ[2]P [2]Lz−dQ[2]2Lz

The position in the image plane can be calculated using (120)

Q(3) =M

(
Qo−

∂g4(Qo,Po)
∂Po

)
(5.159)

where the second term −M ∂g4(wo)
∂Po

agrees with Q(1) from (142).
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When the parameterization with position in image and aperture plane is used, the

interaction Hamiltonian reads

H int
4 =

1
4
(L1t

4 +2L2t
2t′2 +L3t

′4)(~Q2
a)2 +(L1st

3 +L2tt
′(st)′+L3s

′t′3)~Q2
a(~Q~Qa)

+(L1s
2t2 +2L2sts

′t′+L3s
′2t′2−R)(~Q~Qa)2 (5.160)

+
1
2
(L1s

2t2 +L2(s′2t2 +s2t′2)+L3s
′2t′2 +2R)~Q2~Q2

a

+(L1ts
3 +L2ss

′(ts)′+L3t
′s′3)~Q2(~Q~Qa)+

1
4
(L1s

4 +2L2s
2s′2 +L3s

′4)(~Q2)2+

+(CQt′2 +CP t2)~Q2
aLz−2(CQs′t′+CP st)~Q~QaLz +(CQs′2 +CP s2)~Q2Lz

g4 =− 1
4
C(Q[2]2

a )2−KQ[2]2
a (Q[2]Q[2]

a )−A(Q[2]Q[2]
a )2− 1

2
FQ[2]2Q[2]2

a − (5.161)

−DQ[2]2(Q[2]Q[2]
a )− 1

4
E(Q[2]2)2−kQ[2]2

a Lz−2aQ[2]Q[2]
a Lz−dQ[2]2Lz

and

Q(3) =M

(
Qo−

∂g4(Qo,Qa)
∂Qa

)
(5.162)

which corresponds to (149).

Trajectory method

The trajectory equation can be derived from the Lagrangian equations

d
dz

∂M

∂Q′ −
∂M

∂Q
=0 (5.163)

which leads to

φ∗
1
2Q′′+

η2B2

4φ∗
1
2
Q=

(
L3Q

′′−L2Q−C ′
QĴ2Q−2CQĴ2Q

′
)
Q′2 +2(L2Q

′−CP Ĵ2Q)QQ′

(5.164)

+
(
L2Q

′′+L′2Q
′−L1Q−C ′

P Ĵ2Q−2CpĴ2Q
′
)
Q2 +2

(
L3Q

′−CQĴ2Q
)
Q′Q′′+

+2
(
CQQ

′−RĴ2Q
)
K ′

z +2
(
CQQ

′′+C ′
QQ

′−CPQ−2RĴ2Q
′−R′Ĵ2Q

)
Kz

where

Kz =XY ′−Y X ′

was de�ned. Hence, the trajectory equation takes form

Q′′+
η2B2

4φ
Q= f3(Q,Q′,Q′′,z) (5.165)
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ie. there is no polynomial of the second order on the right hand side. It causes that the

Q2 =0 (26) and the equation (28) is reduced to

Q′′
3 +

η2B2

4φ
Q3 = f3(Q1,Q

′
1,Q

′′
1 ,z) (5.166)

and using parameter variation method one can �nd

Q3 =−Mφ
∗− 1

2
o

zi∫
zo

φ∗
1
2 h(t)f3(Q1,Q′

1,Q′′
1 ,t)dt =−M

zi∫
zo

h(t)f3(Q1,Q′
1,Q′′

1 ,t)dt (5.167)

or

Q3 =− M

Wsoφ
∗ 1

2
o

zi∫
zo

φ∗
1
2 t(α)f3(Q1,Q′

1,Q′′
1 α)dα =− M

Wso

zi∫
zo

t(α)f3(Q1,Q′
1,Q′′

1 α)dα (5.168)

depending on the parameterization used.

Because the practical calculation is lengthy we will show it only for case of parameter-

ization by position and directives in the object plane. In such a case the Q1 = gQo +hQ′
o,

Wg = gh′−hg′=1 and Q′′
1 =−L2

L3
Q1; hence, the equation (166) reads

Q′′
3 +

η2B2

4φ∗
Q3 = (5.169)

=φ∗−
1
2
[
I1Q

′2
o Q

′
o +I2Q

′2
o Qo +I3(QoQ

′
o)Q

′
o +I4(QoQ

′
o)Qo +I5Q

2
oQ

′
o +I6Q

2
oQo

+A1KzQ
′
o +A2Q

′2
o Ĵ2Qo +A3KzQo +A4(QoQ

′
o)Ĵ2Qo +A5Q

2
oĴ2Qo+

+N1(QoQ
′
o)Ĵ2Q

′+N2Q
′2
o Ĵ2Q

′
o +N3Q

2
oĴ2Q

′
o

]
where the coe�cients read

I1 =−(L1 +
L2

2

L3
)h3−2L2h

′2h+L′2h
2h′ (5.170a)

I2 =−(L1 +
L2

2

L3
)gh2−2L2h

′2g+L′2g
′h2−2R′h−4Rh′ (5.170b)

I3 =−2(L1 +
L2

2

L3
)gh2−4L2hg′h′+2L′2ghh′+2R′h+4Rh′ (5.170c)

I4 =−2(L1 +
L2

2

L3
)hg2−4L2gg′h′−4Rg′−2R′g+2L′2ghg′ (5.170d)

I5 =−(L1 +
L2

2

L3
)g2h−2L2hg′2 +L′2g

2h′+4Rg′+2R′g (5.170e)

I6 =−(L1 +
L2

2

L3
)g3−2L2g

′2g+L′2g
2g′ (5.170f)
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A1 =2C ′
Qh′−2(CP +CQ

L2

L3
)h (5.171a)

A2 =−C ′
Qh′2g−C ′

P h2g−2CQh′2g′−2CP h2g′−2(CP −CQ
L2

L3
)ghh′ (5.171b)

A3 =−2(CP +CQ
L2

L3
)g+2C ′

Qg′ (5.171c)

A4 =−2C ′
Qgg′h′−2C ′

P g2h−4CQg′2h′−(6CP −2CQ
L2

L3
)ghg′−2(CP −CQ

L2

L3
)g2h′

(5.171d)

A5 =−2CQg′3−C ′
P g3−C ′

Qgg′2−2(2CP −CQ
L2

L3
)g2g′ (5.171e)

N1 =−(6CP −2CQ
L2

L3
)ghh′−2(CP −CQ

L2

L3
)h2g′−4CQg′h′2−2C ′

Qhg′h′−2C ′
P gh2

(5.172a)

N2 =−2(2CP −CQ
L2

L3
)h2h′−2CQh′3−C ′

P h3−C ′
Qhh′2 (5.172b)

N3 =−2(CP −CQ
L2

L3
)ghg′−2CP g2h′−2CQg′2h′−C ′

P g2h−C ′
Qhg′2 (5.172c)

(5.172d)

where we used

KzĴ2Q
′=Q′2Q−(QQ′)Q′ (5.173a)

KzĴ2Q=(QQ′)Q−Q2Q′ (5.173b)

Using (167) one can write

Q3 =M(Ĩ1Q
′2
o Q

′
o + Ĩ2Q

′2
o Qo + Ĩ3(QoQ

′
o)Q

′
o + Ĩ4(QoQ

′
o)Qo + Ĩ5Q

2
oQ

′
o + Ĩ6Q

2
oQo+

+Ã1KzQ
′
o +Ã2Q

′2
o Ĵ2Qo +Ã3KzQo +Ã4(QoQ

′
o)Ĵ2Qo +Ã5Q

2
oĴ2Qo+ (5.174)

+Ñ1(QoQ
′
o)Ĵ2Q+Ñ2Q

′2
o Ĵ2Qo +Ñ3Q

2
oĴ2Q

′
o)

where coe�cients with tilde are calculated like

Ĩ1 =−φ
∗− 1

2
o

zi∫
zo

h(t)I1(t)dt,... (5.175)
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It is clear that (174) must correspond to (144); hence, we express the coe�cients

from (174)

Ĩ1 =φ
∗− 1

2
o

zi∫
zo

(
(L1 +

L2
2

L3
)h4−L′2h

′h3 +2L2h
′2h2

)
dz = (5.176)

=φ
∗− 1

2
o

zi∫
zo

(
L1h

4 +2L2h
′2h2 +L3h

′4− d
dz

(L3h
′3h+L2h

3h′)
)

dz =

=C−φ
∗− 1

2
o [L3h

′3h+L2h
3h′]zi

zo
=C

where we used h′′ =−L2
L3

h and h(zo) =h(zi)= 0. At evaluation of the other coe�cients

we will proceed similarly

Ĩ2 =K−φ∗−
1
2

zi∫
zo

d
dz

(L3hh′2g′+L2h
3g′−2Rh2)dz =K (5.177a)

Ĩ3 =2(K−φ∗−
1
2

zi∫
zo

d
dz

(L3hh′2g′+L2gh2h′+Rh2)dz) = 2K (5.177b)

Ĩ4 =2(A−φ∗−
1
2

zi∫
zo

d
dz

(−Rgh+L2gg′h2 +L3g
′2hh′)dz) = 2A (5.177c)

Ĩ5 =F −φ∗−
1
2

zi∫
zo

d
dz

(2Rgh+L2hg2h′+L3hh′g′2)dz =F (5.177d)

Ĩ6 =D−φ∗−
1
2

zi∫
zo

d
dz

(L3hg′3 +L2hg2g′)dz =D (5.177e)
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Ã1 =2k−2φ∗−
1
2

zi∫
zo

d
dz

(CQh′h)dz =2k (5.178a)

Ã2 =−k+φ∗−
1
2

zi∫
zo

d
dz

(CQh′2hg+CP h3g)dz =−k (5.178b)

Ã3 =2a−2φ∗−
1
2

zi∫
zo

d
dz

(CQg′h)dz =2a (5.178c)

Ã4 =−2a+2φ∗−
1
2

zi∫
zo

d
dz

(CP g2h2 +CQghg′h′)dz =−2a (5.178d)

Ã5 =−d+φ∗−
1
2

zi∫
zo

d
dz

(CP g3h+CQghg′2)dz =−d (5.178e)

Ñ1 =2φ∗−
1
2

zi∫
zo

d
dz

(CP gh3 +CQh2g′h′)dz =0 (5.179a)

Ñ2 =φ∗−
1
2

zi∫
zo

d
dz

(CP h4 +CQh2h′2)dz =0 (5.179b)

Ñ3 =φ∗−
1
2

zi∫
zo

d
dz

(CP g2h2 +CQh2g′2)dz =0 (5.179c)

The third order aberration polynomial then takes form

Q3 =M
(
CQ′2o Q

′
o +K(Q′2o Qo +2(QoQ

′
o)Q

′
o)+2A(QoQ

′
o)Qo +FQ2

oQ
′
o +DQ2

oQo

+k(2KzQ
′
o−Q′2o Ĵ2Qo)+2a(KzQo−(QoQ

′
o)Ĵ2Qo)−dQ2

oĴ2Qo

)
(5.180)

which is coincident to (144).
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6 The Symplectic Classi�cation of Geometric Aber-

rations

The theory of aberrations describes a manner of the optic imperfections of various

devices. The aberrations describe the deviation of an electron trajectory from the ideal

paraxial ray, determined as linear function of positions and directives in the object

plane. From mathematical point of view the ray is function

r = r(z;r0,r ′0) (6.1)

which can be for each z expanded to Taylor series in initial conditions r0 and r
′
0. Hence,

aberration part denotes the nonlinear part of the expansion.

Unfortunately, as the ray is function of four initial variables the Taylor polynomial

contains high number of members even in relatively low order,

Pn =
1
6
(n+3)(n+2)(n+1). (6.2)

Pn denotes number of members in Taylor polynomial of n-th order. It gives 20 members

of the third order, 56 members of the �fth order, 220 members of the 9th order etc.

There are raising two questions. The �rst one is the meaning of each member in the

aberration polynomial including its in�uence on the optical properties of the system.

The second is whether there exists any structure in the aberration coe�cients which

might be useful for understanding of the system properties. Both are partly explained

with symplectic classi�cation of aberrations.

The symplectic classi�cation of the aberration polynomial of the axial symmetric

system was presented in [4], the general systems were classi�ed in series of works [21, 22,

23]. We will present the classi�cation of aberration polynomials of the stigmatic system

according to representation of group adjoint to the algebra of quadratic polynomials

that are determined by the quadratic part of Hamiltonian. We also show the essential

in�uence of the form of paraxial approximation on the relationship among the aberration

polynomials. The classi�cation will be also described for the real aberration polynomials.

6.1 Aberrations and Lie transformations

In the last chapter we showed the consequence between aberrations and Lie transfor-

mations. We found the transfer map in form of Lie transformation

M=M1 ···e:gk(wo,z): ···e:g3(wo,z): (6.3)
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Now we can �nd the aberrations as the expansion of

w(wo,z) =M(wo) (6.4)

into Taylor series in power of wo, ie.

w = f1(wo,z)+f2(wo,z)+ ···fk−1(wo,z)+ ··· (6.5)

Hence, we can describe aberrations using Lie transformation, particulary using of ho-

mogeneous polynomials gk.

One from the most signi�cant properties of aberrations is the invariance according

to a canonical transformation e:f : that can represent eq. the rotation around the optical

axis. The invariance of the aberrations according to a canonical transformation e:f : is

de�ned:

When the phase space in the object plane is transformed by e:f(wo): and then is applied

the transfer map, the result is the same as in case when the transfer map is applied �rst

and the Lie transformation e:f(wi): is applied in image plane.

Hence, the diagram

w
e:g(w):

//

e:f(w):

��

w̃

e:f(w̃):

��
w I

e:g(w̃):
//w̃ I

(6.6)

must commute. Such a property of aberration must in�uent the form of Lie transfor-

mation, namely g(wo)

e:g(wo): = e−:f(w̃I):e:g(wI):e:f(w): = e:g:(wI)e−f(wI)e−:g(wI):e:g(wI):ef(wI) =

=exp(: e:f(w):g(w) :) (6.7)

hence, g(w) must ful�ll

g(w) = e:f(w):g(w) (6.8)

hence, the canonical transformation does not change the form of g. The invariance of

aberrations with respect to a canonical transformation determines easy condition on the

Lie transformation. We will explore the properties of Lie transformation in the following

text.
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6.2 Aberrations and Paraxial approximation

However, the paraxial approximation describes the optimal electron paths, we have

formerly seen that it plays an important role in the aberration theory as well. It was

signi�ed in all perturbation methods. We will focus our attention on the Lie algebra

method, where the paraxial approximation is described by the linear operatorM1 that

ful�lls the equation
d
dz
M1 =−M1 :H2 : . (6.9)

Generally this equation cannot be analytically solved; however, using Magnus formula

[16] we can �nd the operator in form of exponential map,

M1 =exp(: g2(w ,z) :) (6.10)

where

g2(w ,z) =−
z∫

zo

dz1H2(w ,z1)+
1
2

z∫
zo

dz2

z2∫
zo

dz1[H2(z1),H2(z2)]+ ··· . (6.11)

It is a member of subalgebra h2 of the Lie algebra of the quadratic polynomials in phase

space variables with z-dependent coe�cients, where the Poisson bracket plays role of

Lie brackets. Mathematically, h2 is the smallest subalgebra of the algebra that contains

the quadratic part of Hamiltonian. In case when [H2(z1),H2(z2)]= 0 for each z1 and z2

h2 is reduced into one dimensional subspace; hence, (11) is reduced to

g2(w ,z) =

z∫
zo

dz1H2(w ,z1), if [H2(z1),H2(z2)]= 0 ∀z1,z2

Unfortunately, this condition is not generally ful�lled and previous equation is not longer

valid. However, if one knows the structure of h2, he can also describe the general struc-

ture of action of M1 on the polynomial subspace.

The map that assigns for each element g ∈ h2 the adjoint Lie operator : g :∈ gl(P ) is

representation of the algebra h2 into the space P . P is the vector space of polynomial in

the phase space variables. Using standard procedure we can decompose P into the irre-

ducible subspaces according to the representation of h2. Let us consider any polynomial

f0 that is the element of invariant subspace U ⊂P and the series

f0 , f1 =: g2 : f0 , f2 =: g2 : f1 , ...
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As the �rst member of the series f0 ∈U and U is invariant according to the representation

of h2, if fi−1 ∈U then fi ∈U . Hence, all members of the series are elements of U .

Moreover, U is a vector space; thus, any linear combination of members of U is member

of U as well. Hence,

M1f =exp(: g2 :)f =
∞∑

n=0

: g2 :n

n!
f ∈U (6.12)

ie. if the space is invariant under the representation of h2 then it is invarian under the

action M1 =exp(: g2 :) where g2 ∈ h2.

Hereby we showed that if we �nd the decomposition of the polynomial subspace on

the irreducible subspaces under the representation of h2, these subspaces are invariant

also under the action of M1. But why should we do that? We can �nd three reasons.

The n-th order part of the Hamiltonian takes form

Hn =
∑

i+j+k+l=n

aijklx
iyjpk

xpl
y

The transition to the interaction Hamiltonian(5.101)

H int(~w ,z)= Hn(w(~w ,z),z) =M1Hn(~w ,z) (6.13)

is of complicated form in these coordinates; however, when we decompose the n-th

order polynomials on irreducible subspaces Vn =Vn1⊕···⊕Vnk, the parts of Hamiltonian

belonging to di�erent invariant subspaces do not mix. It simpli�es the transition.

The action ofM1 also arises in two other situations. The �rst one is at recalculation

the aberration coe�cients expressed in object coordinates to those expressed in paraxial

coordinates in the image. Generally, the coordinates in the image can be expressed

wi =M1wo + f2(wo)+ f3(wo)+ ···= (6.14)

=wp
i + f2(M−1

1 w
p
i )+ f3(M−1

1 w
p
i )+ ···

where wp
i =M1wo denotes paraxial coordinates in the image. By using the feature of

the Lie transformation [3] the previous equation takes

wi =w
p
i +M−1

1 f2(w
p
i )+M−1

1 f3(w
p
i )+ ··· (6.15)

which is in the form of the previous case. Similarly we can say that the parts of the

aberration polynomials belonging to di�erent irreducible subspaces do not mix at the

transformation.
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The last motivation example is the combining of the systems. Let us have two systems

where the �rst one is described by transition mapMI and the second one by transition

map MII . The result map of system which is formed by their combination these two

ones is described by transfer map [3]M=MIMII . By using decomposition of transfer

maps into paraxial and nonlinear part we can �nd

M=M1exp(: g3(wo)+g4(wo)+ ··· :)=MI
1exp(: gI

3(wo)+gI
4(wo)+ ··· :)· (6.16)

·MII
1 exp(: gII

3 (wo)+gII
4 (wo)+ ··· :)

which can be written by using manipulations described in previous section in form

M=MI
1MII

1 e:(MII
1 )−1(g3(wo)+g4(wo)+···):e:gII

3 (wo)+gII
4 (wo)+···:. (6.17)

using famous Baker�Campbell�Hausdor� formula one can �nd

g3(wo) = (MII
1 )−1gI

3(wo)+gII
3 (wo) (6.18a)

g4(wo) = (MII
1 )−1gI

4(wo)+gII
4 (wo)+

1
2
[(MII

1 )−1gI
3(wo),gII

3 (wo)] (6.18b)

...

From the last equation it is clear that just aberrations belonging to corresponding

irreducible subspaces are mixing at combining the transfer map.

These entire examples show the important role of the paraxial approximation, which

can be described by action of M1. The decomposition of aberration polynomial into

irreducible subspaces shows the structure of the aberration and might be helpful for

understanding of the optical properties of the system. In particular we will proceed by:

• We �nd general form of the algebra h2 for stigmatic systems

• We �nd the decomposition of the polynomial space in irreducible subspaces ac-

cording the representation of h2

• We describe the structure of invariant subspaces of the polynomial space under

the action M1

6.3 Lie algebra h2

In general case the quadratic part of the Hamiltonian is described by (4.22), consequently

the subalgebra h2 is generated by four polynomials q2, p2, Lz and x2−y2. Hence, the
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algebra h2 is equal to algebra of all quadratic polynomials, which is via (2) the 10�

dimensional vector space. The structure of such a space is too complicated. Fortunately,

the general form of the quadratic part of Hamiltonian is not necessary, as the most of

optical devices is constructed to be stigmatic.

When one applies the stigmatic condition (4.6) the quadratic part of the Hamiltonian

reduces into

H2 =
η

2eφ∗
1
2
p2 +

ηB

2φ∗
1
2
Lz +

1
2

(
eγ0φ

′′

4ηφ∗
1
2

+
eηB2

4φ∗
1
2

+
eF 2

1

8ηφ∗
3
2

)
q2 (6.19)

The subalgebra h2 is then formed by four polynomials p2, q2, qp and Lz. It is common

to introduce notation [4]

a+ =−1
2
p2 (6.20a)

a−=
1
2
q2 (6.20b)

a0 =
1
2
[a+,a−] =

1
2
qp (6.20c)

Lz =xpy−ypx (6.20d)

One can then �nd the commutation relations

[Lz,a
+] = 0 [Lz,a

−] = 0 [Lz,a0] = 0

[a+,a−] = 2a0 [a0,a
+] = a+ [a0,a

−] =−a− .

The polynomials a+, a− and a0 form the Lie subalgebra of the quadratic polynomial

algebra which is isomorphic to sp(2,R); moreover, as the polynomial Lz commutes with

the others the structure of h2 can be written

h2
∼= sp(2,R)⊕R (6.21)

This is the structure we will consider in the following text.

Let us denote the adjoint operator to a+, a−, a0 and Lz

â+ =: a+ : =−1
2

:p2 : (6.22a)

â−=: a− : =
1
2

:q2 : (6.22b)

â0 =: a0 : =
1
2

: [a+,a−] :=
1
2

:qp : (6.22c)

L̂z =:Lz : =: xpy−ypx : (6.22d)
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which form basis of adjoint algebra : h2 :, which has the same algebraic structure as

algebra h2.

6.4 Representation of h2 on the space of complex polynomials

When we know the structure of h2 we can describe the adjoint representation on the

polynomial space. The �rst important property of the action is that the polynomial order

remains unchanged under the action of h2, the homogeneous polynomials of di�erent

order do not mix and they can be investigated independently. Hence, the polynomial

space can be decomposed to

V =
∞⊕

n=1

Vn (6.23)

where each Vn is reducible representation of h2.

The order of a polynomial can be calculated as an eigenvalue of number operator

N̂ =x
d
dx

+y
d
dy

+px
d

dpx
+py

d
dpy

(6.24)

hence, as the action h2 conserves the order of homogeneous polynomial, there must be

ful�l

[N̂ ,â0] = [N̂ ,â+] = [N̂ ,â−] = [N̂ ,L̂z] = 0. (6.25)

Now we must �nd decomposition of each Vn to irreducible subspaces. As the �rst step

we describe the eigen subspaces of L̂z. This operator is the generator of rotation around

the axis z [10]. The transformation has no eigen direction in the real plane perpendicular

to the axis z. The standard way how to describe the decomposition on the irreducible

subspaces is to extend the real space to complex. In the complex extension it is possible

to �nd the basis of eingen vectors of any linear operator. Let us introduce the coordinates

z =(x+iy)/
√

2 (6.26a)

z̄ =(x− iy)/
√

2 (6.26b)

and canonically adjoint impulses found by a standard way [10] read

pz =(px− ipy)/
√

2 (6.26c)

pz̄ =(px +ipy)/
√

2. (6.26d)
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z - coordinate of angular momentum takes form

Lz = i(zpz− z̄pz̄) (6.27)

the action of which is described by

L̂zz
i1 z̄i2pi3

z p̄i4
z = i(i3− i4− i1 + i2)zi1 z̄i2pi3

z p̄i4
z , (6.28)

ie. the polynomials of form zi1 z̄i2pi3
z p̄i4

z are eigenvectors of L̂z. Let us denote

l =(i3− i4− i1 + i2),

Using n = i1 + i2 + i3 + i4 one can �nd that l =n−2(i1 + i4). Because i1 + i4 can take

value from 0 to n; hence, for given polynomial order n

l∈{−n,−n+2,...,n−2,n}. (6.29)

The eigenvectors with the same value of l form subspace of Vn. As [sp(2,R),Lz] = 0 these

subspaces are invariant under the action of h2 and one can write

Vn =
n⊕

k=0

Vn,n−2k (6.30)

Let us consider the polynomial u = zi1 z̄i2pi3
z pi4

z̄ ∈Vn,l, then in subspace Vn there must

exist polynomial ū = zi2 z̄i1pi4
z pi3

z̄ ∈Vn,l. As L̂zu = ilu the action of L̂z on ū takes form

L̂zū =−i(i3− i4− i1 + i2)ū =−ilū

hence, ū∈Vn,−l. Using the linearity of L̂z one can �nd for each u∈Vn,l complex conju-

gate polynomial ū∈Vn,−l. Thus, it was shown that subspaces Vn,l and Vn,−l are complex

conjugate, ie.

Vn,l = V̄n,−l (6.31)

The next step is to describe the action of sp(2,R) on the polynomial subspace Vnl.

The polynomials a+, a− and a0 are transformed like

a+ =−pzpz̄ (6.32a)

a−= zz̄ (6.32b)

a0 =
1
2
(zpz + z̄pz̄) (6.32c)
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Let us note that all of the polynomials Lz, a+, a− and a0 are actually real polynomials

expressed in complex coordinates.

First we describe general properties of a �nite dimensional complex representations

of sp(2,R), which is for our case represented by operators â+, â− and â0. Here it is usual

to introduce the Casimir operator [17],

â2 = â−â+ + â2
0 + â0 = â+â−+ â2

0− â0 . (6.33)

It commutes with all elements of sp(2,R)

[â2,â−] = [â2,â+] = [â2,â0] = 0,

hence, in the irreducible subspace there exists base formed by common eigenvectors of

â2 and â0. Let us denote them | j,m〉,

â2 | j,m〉= j(j +1) | j,m〉 (6.34)

â0 | j,m〉=m | j,m〉 (6.35)

From the commutation relations one can �nd the meaning of â+ and â− as raising

or descending operator respectively,

â0â
± | j,m〉= â±â0±a± | j,m〉=(m±1)a± | j,m〉 (6.36)

a± | j,m〉∼| j,m±1〉 (6.37)

ie. the action of â+ transforms vector with an eigenvalue m relative to â0 to vector with

the eigenvalue m+1, similarly the action of â− transforms vector with the eigenvalue

m to vector with the eigenvalue m−1.

The representation is �nite, the consequence of which there must exist vector |
j,m1 〉 6=0 that vanishes under the action of â+, ie. a+ | j,m1 〉=0. Using the de�nition

(33) one can �nd

â2 | j,m1 〉=(m2
1 +m1) | j,m1 〉

and comparing with (34) m1 = j. Hence, in the irreducible subspace there exists vector

| j,j 〉 6=0 which vanish under the action of â+.

Applying operator â− we can generate chain of vectors,

| j,j−k〉∼ (â−)k | j,j 〉, (6.38)
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which is invariant under the action of sp(2,R) and forms an irreducible subspace. As we

suppose for the representation to be �nite, the chain must be �nite as well; hence, there

must exist km such that | j,j−km 〉 6=0 that vanishes under the action of â−, ie.

â− | j,j−km 〉=| j,j−km−1〉=0 (6.39)

and when one calculates the action of â2

â2 | j,j−km 〉=(â+â−+ â2
0− â0) | j,j−km 〉=((j−km)2−j +km) | j,j−km 〉

=(j2 +j) | j,j−km 〉 (6.40)

and compares the coe�cients in last equation he can �nd km =2j. Hence, we can write

the possible eigenvalue of â0

m∈{j,j−1,···−j +1,−j} (6.41)

moreover, as km is integer the possible values of j are constrained to

j ∈{0,
1
2
,1,

3
2
,...} (6.42)

Thus, the irreducible representation of sp(2,R) can be characterised by eigenvalues of

â2. We will denote them Dj ,

Dj =<| j,j 〉,| j,j−1,...,| j,−j +1〉,| j,−j 〉> (6.43)

We did not completely de�ned the polynomial | j,m〉 yet, we only note that it is

proportional to (a−)j−m | j,m〉, now we will determine the multiplicative factor. We will

use di�erent normalisation than is used in quantum mechanics, where the representation

of sl(2,R)∼= sp(2,R) is used at description of angular momentum operator. We will use

the normalisation introduced in [4]

| j,m−1〉= 1
m+j

â− | j,m〉 (6.44a)

| j,m+1〉= 1
m−j

â+ | j,m〉 (6.44b)

It is well known [17] that representation of the sp(2,R) is completely reducible, which

for our case means that the space Vn,l can be written as a direct sum

Vn,l =
⊕
j∈K

Vn,l,j =
⊕
j∈K

Dj , (6.45)
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where K is an index set. Now two questions are raising, what is the form of elements in

Dj and what can be said about the index set K.
It was shown that each irreducible space Dj is determined by the appropriate vector

| j,j 〉; hence, if one wants to describe all Dj ∈Vnl he must �nd all polynomial u∈Vnl

that vanishes after the action of â+ and are eigenvectors of â0 and â2. The polynomials

u = pa
zpb

z̄(i(zpz− z̄pz̄))c = pa
zpb

z̄L
c
z, a+b+2c=n

ful�l such conditions. Really â+u =0, â0u = 1
2 (a+b)u and â2u =( 1

4 (a+b)2 + 1
2 (a+b))u.

Moreover, we require for the polynomial to be element of Vnl. Let us �nd the connection

between a, b, c and n, l, j.

N̂u =(a+b+2c)u =nu (6.46a)

L̂zu = i(a−b)u = ilu (6.46b)

â2u =
1
2
(a+b)(

1
2
(a+b)+1)u = j(j +1)u (6.46c)

Comparing the results and solving the algebraic equation one can �nd u in form

u = p
j+ 1

2 l
z p

j− 1
2 l

z̄ L
1
2 n−j
z =: nPj;l

j , (6.47)

where the notation for the polynomial using its eigenvalues relative to operators N , L̂z,

â2 and â0 were introduce, ie.

N̂ nPj;l
m =n nPj;l

m (6.48a)

L̂z
nPj;l

m = il nPj;l
m (6.48b)

â2 nPj;l
m = j(j +1) nPj;l

m (6.48c)

â0
nPj;l

m =m nPj;l
m (6.48d)

more over one can easily show that

nPj;l
j =L

n
2−j
z

2jPj;l
j (6.49)

Because the exponent cannot be negative, the value of j is constrained with the

others, ie.

j≤ 1
2
n, j≥ 1

2
l, j≥−1

2
l (6.50)

hence,

j ∈{| l |
2

,
| l |
2

+1,... ,
n

2
} (6.51)
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and subspace

Vn,l
∼=D |l|

2
⊕D |l|

2 +1
⊕···⊕Dn

2
⊕Un,l (6.52)

where each Dj is generated by the action of â− on the polynomial nPj;l
j ,

nPj;l
m =α(j,m)L

1
2 n−j
z (â−)j−mp

j+ 1
2 l

z p
j− 1

2 l
z̄ =L

1
2 n−j
z

2jPj;l
m (6.53)

the multiplicative factor α(j,m) =
∏j

i=m+11/(i+j) and Unl is some rest subspace. Using

(53) it is easy to see that

Vnlj =L
n
2−j
z ·V2j,l,j (6.54)

Now we will show that Unl =0. It is possible by comparing of the subspace dimen-

sions. The dimension of nth order polynomials subspace can be evaluated

dimVn =
(n+3)!

n!3!
=

1
6
(n+3)(n+2)(n+1). (6.55)

On the other hand one can �nd the dimension

dimVn =
n∑

k=0

Vn,n−2k =
n∑

k=0

(
n/2∑

j=|n−2k|/2

dimDj +dimUn,n−2k)

and as the dimension of Dj is 2j +1,

dimVn =
n∑

k=0

(
n/2∑

j=|n−2k|/2

(2j +1)+dimUn,n−2k)= (6.56)

=
n∑

k=0

1
2
(n+1+ |n−2k |+1)(

n

2
− |n−2k |

2
+1)+dimUn,n−2k

n∑
k=0

(
n

2
+1)2− (n−2k)2

4
+

n∑
k=0

dim(Un,n−2k) =

=
1
6
(n+3)(n+2)(n+1)+

n∑
k=0

dim(Un,n−2k)

comparing (55) and (56) it is showed that dimUnl =0 and

Vn,l
∼=V

n,l,
|l|
2
⊕V

n,l,
|l|
2 +1

⊕···⊕Vn,l, n
2

(6.57)

where each Vn,l,j
∼=Dj .
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We have shown that Vn,l = V̄n,−l, when we use the decomposition (57) it is easy to

see that each of the subspaces Vn,l,j is complex conjugate to the subspace Vn,−l,j , or

more particularly

nPj;l
m = ¯nPj;−l

m . (6.58)

The description of the decomposition of polynomial space to irreducible subspaces

is done by combining (23), (30) and (57). The particular form of the polynomials is

described by (53).

6.5 Example: Decomposition of polynomial space up to 4th order

We use the method mentioned in the previous subsection. As the irreducible subspaces

of di�erent orders do not mix we can describe the decomposition of each order indepen-

dently.

Polynomials of the third order

For the subspace V3 n =3 and using (29) l∈{−3,−1,1,3}. Hence,

V3 =V3,−3⊕V3,−1⊕V3,1⊕V3,3 (6.59)

For V3,−3, n =3 and l =−3 using (51) j ∈{ 3
2}; hence,

V3,−3 =V3,−3, 3
2
∼=D3/2 (6.60)

The irreducible subspace D3/2 is generated from polynomial (47), ie.

3P
3
2 ;−3
3
2

= p3
z̄ (6.61a)

applying the operator â−

3P
3
2 ;−3
1
2

=
1
3
â− 3P

3
2 ;−3
3
2

=
1
3
â−p3

z̄ = zp2
z̄ (6.61b)

3P
3
2 ;−3

− 1
2

=
1
2
â− 3P

1
2 ;−3
3
2

=
1
2
â−zp2

z̄ = z2pz̄ (6.61c)

3P
3
2 ;−3

− 3
2

= â− 3P−
1
2 ;−3

3
2

= â−z2pz̄ = z3 (6.61d)

hence,

V3,−3 =<p3
z̄,zp2

z̄,z
2pz̄,z

3 > (6.62)
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Using the same procedure one can �nd for l =−1, j ∈{ 1
2 , 3

2} and V3,−1
∼=D1/2⊕D3/2,

with D1/2 formed by polynomials

3P
1
2 ;−1
1
2

= ipz̄(zpz− z̄pz̄) = pz̄Lz (6.63a)

3P
1
2 ;−1

− 1
2

= iz(zpz− z̄pz̄) = zLz (6.63b)

and D3/2 by

3P
1
2 ;−1
3
2

= pzp
2
z̄ (6.64a)

3P
1
2 ;−1
1
2

=
1
3
z̄p2

z̄ +
2
3
zpz̄pz (6.64b)

3P
1
2 ;−1

− 1
2

=
2
3
z̄zpz̄ +

1
3
z2pz (6.64c)

3P
1
2 ;−1

− 3
2

= z̄z2 (6.64d)

The subspace V3,1
∼=D1/2⊕D3/2 with

D1/2 =<pzLz,z̄Lz > (6.65a)

D3/2 =<p2
zpz̄,

2
3
z̄pzpz̄ +

1
3
zp2

z,
1
3
z̄2pz̄ +

2
3
zz̄pz,zz̄2 > (6.65b)

and subspace V3,3
∼=D3/2, ie.

V3,3 =<p3
z,z̄p2

z,z̄
2pz,z̄

3 > (6.66)

Polynomials of the forth order

For n =4 the values of l are elements of the set {−4,−2,0,2,4}. We will show the

procedure only for the case l =0, for the other we will present only the results.

When l =0, j goes through the set {0,1,2}; thus, V4,0
∼=V4,0,0⊕V4,0,1⊕V4,0,2. The

irreducible space V4,0,0
∼=D0 is a one dimensional vector space generated by vector

4P0;0
0 =L2

z =−(zpz− z̄pz̄)2 (6.67)

The irreducible subspace V4,0,1
∼=D1 is generated by the polynomial

4P1;0
1 = pzpz̄Lz (6.68a)
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and applaying apperator â− we generate the basis

4P1;0
0 =

1
2
â− 4P1;0

1 =
1
2
(zpz + z̄pz̄)Lz (6.68b)

4P1;0
−1 = â− 4P1;0

0 = zz̄Lz (6.68c)

and the subspace V4,0,2
∼=D2 is generated by the polynomial

4P2;0
2 =(pzpz̄)2 (6.69a)

and the other basis elements take form

4P2;0
1 =

1
2
pzpz̄(zpz + z̄pz̄) (6.69b)

4P2;0
0 =

1
6
(zpz + z̄pz̄)2 +

1
3
zz̄pzpz̄ (6.69c)

4P2;0
−1 =

1
2
zz̄(zpz + z̄pz̄) (6.69d)

4P2;0
−2 = z̄2z2 (6.69e)

For l =−4, j must be equal 2; hence, V4,−4 =V4,−4,2
∼=D2, which is generated by

V4,−4,2 =<p4
z̄,zp3

z̄,z
2p2

z̄,z
3pz̄,z

4 > (6.70)

For l =−2, j goes through the set {1,2}; hence, V4,−2 =V4,−2,1⊕V4,−2,2
∼=D1⊕D2

where

V4,−2,1 =<p2
z̄Lz,zpz̄Lz,z

2Lz > (6.71)

and

V4,−2,2 =<pzp
3
z̄,

1
4
p2

z̄(z̄pz̄ +3zpz),
1
2
zpz̄(zpz + z̄pz̄),

1
4
z2(zpz +3z̄pz̄),z̄z3 > (6.72)

The subspace V4,2 is complex conjugate to V4,−2 and V4,4 is complex conjugate to

V4,−4.

6.6 Representation of h2 on the real space of polynomials

We have described the representation of h2 on the space of complex polynomials, but

the real representation is more complicated. We have noted that except of the axial

symmetric polynomials there exists no eigen vectors of Lz in the real polynomial space.
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Fortunately, using the decomposition of the space of complex polynomials we can �nd

the irreducible subspaces of real polynomials.

Let us consider the irreducible subspaces Vn,l,j and Vn,−l,j . We showed that these

subspaces are complex conjugate and each element nPj;l
m ∈Vn,l,j ,

nPj;l
m is complex

conjugate to nPj;−l
m ∈Vn,−l,j . Let us de�ne two real polynomials

ξ =
1
2
( nPj;l

m + nPj;−l
m ) (6.73a)

η =− i
2
( nPj;l

m − nPj;−l
m ) (6.73b)

Even though these two polynomials are not eigen vectors of L̂z, the subspace <ξ,η > is

invariant under the action, ie.

L̂zξ =
1
2
(il nPj;l

m − il nPj;−l
m )=−lη (6.74a)

L̂zη =
1
2i

(il nPj;l
m +il nPj;−l

m ) = lξ (6.74b)

Now we will apply this approach to the whole space V . Let us de�ne the real vectors

nCj;l
m = 2j−1( nPj;l

m + nPj;−l
m ) (6.75a)

nSj;l
m =−i2j−1( nPj;l

m − nPj;−l
m ) (6.75b)

and for each n, l > 0, and j the real subspaces

U+
n,l,j =< nCj;l

j ,··· , nCj;l
−j > (6.76a)

U−
n,l,j =< nSj;l

j ,··· , nSj;l
−j > (6.76b)

Using the properties of representation h2 on the space of complex polynomials we

�nd

â−

j +m
nCj;l

m =2j−1(
a−

j +m
nPj;l

m +
a−

j +m
nPj;−l

m ) = (6.77)

=2j−1( nPj;l
m−1 + nPj;−l

m ) = nCj;l
m−1

and similarly

â−

j +m
nSj;l

m = nSj;l
m−1 (6.78)
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The subspace U+
n,l,j can also be generated from nCj;l

j by lowering with â− and

similarly the subspace U−
n,l,j from the polynomial nSj;l

m . Hence, these subspaces are

irreducible under the action of sp(2,R) isomorphic to Dj . Unfortunately, they are not

invariant under the action of L̂z,

L̂z
nCj;l

m =−l nSj;l
m (6.79a)

L̂z
nSj;l

m = l nCj;l
m (6.79b)

which causes mixing these two subspaces. The irreducible subspace under the action of

h2 is then

Un,l,j =U+
n,l,j⊕U−

n,l,j (6.80)

where ⊕ for this once means just vector space addition.

When l =0 the situation is much easier because all of polynomials nPj;0
m are real

polynomials expressed in complex coordinates. Thus, we must only express the polyno-

mials in real coordinates and normalize, ie.

nCj;0
m =2j nPj;0

m (6.81)

Hence, the decomposition of the real polynomial space

U =
∑

n

n
2∑

k=0

1
2∑

j=k

Un,2k,j (6.82)

is the decomposition on the irreducible subspaces according to the action oh h2.

6.7 Example: Real polynomials up to the fourth order

We have calculated the decomposition of space of complex polynomials to irreducible

subspaces according to the action of h2. Now we will use that result and applying the

procedure described in last section we will show the decomposition of the real polynomial

space up to fourth order.
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The third order polynomials

We will show the procedure on construction of the space U3,3,3/2. Using (62), (66) and

(75b) one can �nd the basis of U+
3,3,3/2

3C
3
2 ;3
3
2

=2
1
2 ( 3P

3
2 ;3
3
2

+ 3P
3
2 ;−3
3
2

) (6.83a)

=
√

2(p3
z +p3

z̄) = px3−3pxp2
y

3C
3
2 ;3
1
2

=2
1
2 (z̄pz +zpz̄) =x(p2

x−p2
y)−2ypxpy (6.83b)

3C
3
2 ;3

− 1
2

=2
1
2 (pz z̄

2 +pz̄z
2) = px(x2−y2)−2xypy (6.83c)

3C
3
2 ;3

− 3
2

=2
1
2 (z3 + z̄3) =x3−3xy2 (6.83d)

alternatively one can �nd the basis by descending polynomial 3C3/2;3
3/2 . The basis of

U−
3,3,3/2 takes

3S
3
2 ;3
3
2

=−i2
1
2 ( 3P

3
2 ;3
3
2
− 3P

3
2 ;−3
3
2

) (6.84a)

=−i
√

2(p3
z−p3

z̄) = 3p2
xpy−p3

y

3S
3
2 ;3
1
2

=−i2
1
2 (z̄pz−zpz̄) = y(p2

x−p2
y)+2xpxpy (6.84b)

3S
3
2 ;3

− 1
2

=−i2
1
2 (pz z̄

2−pz̄z
2) = py(x2−y2)+2xypx (6.84c)

3S
3
2 ;3

− 3
2

=−i2
1
2 (z3− z̄3) = 3x2y−y3 (6.84d)

Hence,

U+
3,3, 3

2
=<px3−3pxp2

y,x(p2
x−p2

y)−2ypxpy,px(x2−y2)−2xypy,x3−3xy2 > (6.85a)

U−
3,3, 3

2
=< 3p2

xpy−p3
y,y(p2

x−p2
y)+2xpxpy,py(x2−y2)+2xypx,3x2y−y3 > (6.85b)

Now we present the results for the other subspaces.

U+
3,1, 1

2
=<pxLz,xLz > U−

3,1, 1
2

=<pyLz,yLz > (6.86)

U+
3,1, 3

2
=<pxp

2,
1
3
xp2 +

2
3
pxqp,

1
3
pxq

2 +
2
3
xqp,xq2 > (6.87a)

U−
3,1, 3

2
=<pyp

2,
1
3
yp2 +

2
3
pyqp,

1
3
pyq

2 +
2
3
yqp,yq2 > (6.87b)
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Polynomials of the forth order

The procedure is except case l =0 similar as in case of the polynomials of third order.

We will present only the results

U4,4,2 =U+
4,4,2⊕U−

4,4,2, where

4C2;4
2 =(p2

x−p2
y)2−4p2

xp2
y (6.88a)

4C2;4
1 =(xpx−ypy)(px2−p2

y)−2pxpy(xpy +ypx) (6.88b)

4C2;4
0 =(x2−y2)(p2

x−p2
y)−4xypxpy (6.88c)

4C2;4
−1 =(xpx−ypy)(x2−y2)−2xy(xpy +ypx) (6.88d)

4C2;4
−2 =(x2−y2)2−4x2y2 (6.88e)

is bases of U+
4,4,2 and polynomials

4S2;4
2 =4pxpy(p2

x−p2
y) (6.89a)

4S2;4
1 =(xpy +ypx)(p2

x−p2
y)+2pxpy(xpx−ypy) (6.89b)

4S2;4
0 =2(xpx−ypy)(xpy +ypx) (6.89c)

4S2;4
−1 =(xpy +ypx)(x2−y2)+2xy(xpx−ypy) (6.89d)

4S2;4
−2 =4xy(x2−y2) (6.89e)

form bases of U−
4,4,2.

The subspace U4,2 is formed from subspaces

U+
4,2,2 =< (p2

x−p2
y)p2,xp3

x−yp3
y,(xpx−ypy)qp,x3px−y3py,(x2−y2)q2 > (6.90a)

U−
4,2,2 =< 2pxpyp

2,
1
2
p2(xpy +ypx)+pxpyqp,(xpy +ypx)qp, (6.90b)

1
2
(xpy +ypx)q2 +xyqp,2xyq2 >

U+
4,2,1 =< (p2

x−p2
y)Lz,(xpx−ypy)Lz,(x2−y2)Lz > (6.91a)

U−
4,2,1 =< 2pxpyLz,(xpy +ypx)Lz,2xyLz > (6.91b)

The subspace belonging to l =0 is formed from irreducible subspaces

U4,0,2 =< (p2)2,p2qp,
1
3
(p2q2 +2(qp)2),q2qp,(q2)2 > (6.92a)
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U4,0,1 =<p2Lz,qpLz,q
2Lz > (6.92b)

U4,0,0 =<L2
z > (6.92c)

6.8 Decomposition of polynomial with respect to M1

As we showed before the irreducible subspaces in real polynomial subspace according

to action of h2 are also invariant with respect to

M1 = e:g2: , g2 ∈ h2. (6.93)

Moreover, if B(z) 6=0 using (11) and (19)

g2 = a(z)p2 +b(z)qp+c(z)q2 +d(z)Lz (6.94)

where each coe�cient is nonzero, these invariant subspaces are irreducible. The decom-

position into irreducible subspaces is then described by (82). Now we can easily �nd the

physical meaning of numbers that characterize the bases vector of irreducible subspaces.

First we will show the meaning of number l. In complex polynomial space it deter-

mines the eigenvalue of Lz, ie.

L̂z
nPj;l

m = il nPj;l
m (6.95)

the meaning of l cannot be found in the real polynomial because except the axial sym-

metric polynomials there are no eigenvectors of Lz. Let us consider polynomial

nCj;l
m =2j−1( nPj;l

m + nPj;−l
m ) (6.96)

which according to the action of exp(ϕ :Lz :) takes form

exp(ϕ :Lz :) nCj;l
m =2j−1(eϕ:Lz : nPj;l

m +eϕ:Lz : nPj;−l
m ) = (6.97)

=2j−1(eiϕl nPj;l
m +e−iϕl nPj;−l

m )

In case of ϕl =2πk, the polynomial nCj;l
m is invariant according to Lie transformation

exp(ϕ :Lz :). This transformation represents the rotation in phase space around the op-

tical axis about angle ϕ =2πk/l. The polynomials nCj;l
m and nSj;l

m remained unchanged

when the phase space is rotated around the origin obout angle 2πk/l.
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The next interesting characteristic of homogeneous polynomials is eigenvalue m of

Lie operator â0. The operator a0 generates Lie transformation exp(τ : a0 :) which acts

as pure magni�cation in four dimensional phase space,

exp(τ : a0 :)

(
q

p

)
=exp(τ :qp :)

(
q

p

)
=

(
e−τq

eτp

)
(6.98)

Thus, the value m describes how the in�uence of aberrations changes with magni�cation,

or more trivial it expresses excess of p's over q's, m is known as Seidel weight [21].

In practical calculations the most important are aberrations with the highest weight

because they contain just px or py and their in�uence does not change with distance

from the axis.

The eigenvalue j of operator â2 has the worst explained meaning. It expresses the

order of skewness variable Lz =xpy−ypx in the homogeneous polynomial nCj;l
m which

takes n/2−j. In the axial symmetric case, when the order of Lz is odd the polynomial

is not invariant under the discrete space re�ection x→−x, px→−px, y→ y, py → py or

y→−y, py →−py, x→x, px→ px respectively and the aberrations that it describes are

anisotropic.

6.9 The third order axial symmetric aberrations

The third order axial symmetric aberrations are described by the Lie transformation

exp(: g4 :), where g4 ∈V4,0, ie.

g4 =− C

4
4C2;0

2 −K 4C2;0
1 − α

2
4C2;0

0 − β

2
4C0;0

0 −D 4C2;0
−1−

E

4
4C2;0
−2 (6.99)

−k 4C1;0
1 −2a 4C1;0

0 −d 4C1;0
−1

This type of aberration is well described and classi�ed, we will mention the stan-

dard meaning of each member in (99). The �rst term −C
4

4C2;0
2 describes the spherical

aberration

exp(−C

4
: 4C2;0

2 :)q =exp(−C

4
: (p2)2 :)q =q+Cp2p+o(5) (6.100)

the second one describes the coma

exp(−K : 4C2;0
1 :)q =exp(−K :p2qp :)q =q+K(p2q+2(qp)p)+o(5). (6.101)

The polynomial D 4C2;0
−1 generates the distorsion

exp(−D : 4C2;0
−1 :)q =exp(−D :q2qp :)q =q+Dq2q+o(5). (6.102)
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and the polynomial 4C2;0
−2 has no e�ect on the change of coordinates, it a�ects the �nal

directives.

The e�ect of 4C2;0
0 and 4C0;0

0 is necessary to describe together, they generate the

astigmatism and the �eld curvature. One can �nd two de�nitions of the astigmatism,

the �rst one [3] is de�ned as

exp(−A : 4C2;0
0 − 1

3
4C0;0

0 :)q =exp(−A : (qp)2 :)q =q+2A(qp)q+o(5) (6.103)

the second one used eq. in [1] reads

exp(−A :
1
2

4C2;0
0 − 2

3
4C0;0

0 :)q =exp(−A : (qp)2− 1
2
q2p :2)q = (6.104)

=q+A(2(qp)q−q2p)+o(5)

The �eld curvature is de�ned

exp(−F :
1
2

4C2;0
0 +

1
3

4C0;0
0 :)q =exp(−1

2
F :q2p2 :)q =q+Fp2q+o(5) (6.105)

Both these aberrations mix e�ect of action of polynomials 4C2;0
0 and 4C0;0

0 . In fact these

polynomials di�er only in value of spin, other characteristics are identical.

The polynomials from the space V4,0,1 are not invariant according to re�ection with

respect to any plane, that contains the optical axis. Thus, the aberrations that are

described by these polynomials are anisotropic. The �rst is anisotropic koma

exp(−k : 4C1;0
1 :)q =exp(−k :Lzp

2 :)q =q+k(2Lzp−p2Ĵ2q)+o(5) (6.106)

the second one is the anisotropic astigmatism

exp(−2a : 4C1;0
0 :)q =exp(−2a :Lzpq :)q =q+2a(Lzq−qpĴ2q)+o(5) (6.107)

and the last is the anisotropic distorsion

exp(−d : 4C1;0
−1 :)q =exp(−d :Lzq

2 :)q =q−dq2Ĵ2q+o(5). (6.108)

These coe�cients have no analogue in light optics; their existence is caused by presence

of magnetic �eld [1]

Let us say more about the structure of aberration polynomials. They are represent

by the third order homogeneous polynomials as the results of poisson bracket [V4,0,q]

and because each g ∈V4,0 ful�lls

L̂z[g,q] = [L̂zg,q]+[g,L̂zq] = [g,q] (6.109)
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[V4,0,q]∈V3,1. The polynomial space V3,1 is formed by 12 polynomials and considering

the phase space dimension it takes 124 possible combinations. However, we showed that

there are just nine independent aberration coe�cients. This is caused by the fact that

the transformation is canonical and can be described by g4 ∈V4,0 like Lie transformation

exp(: g4 :). Hence, general axial symmetric aberration polynomial reads(
~q

~p

)
=exp(: g4 :)

(
qo

po

)
=

(
qo

po

)
+C

(
p2

opo

0

)
+K

(
2(qopo)po +p2

oqo

−p2
opo

)
+

2A

(
(qopo)qo

−(qopo)po

)
+F

(
q2

opo

−p2
oqo

)
+D

(
q2

oqo

−2(qopo)qo−q2
opo

)
+E

(
0

−q2
oqo

)
+

+k

(
Lzpo−p2

oĴ2qo

−p2
oĴ2po

)
+2a

(
Lzqo−(qopo)Ĵ2qo

−Lzqo−qopoĴ2po

)
−d

(
q2

o Ĵ2qo

2Lzqo +q2
o Ĵ2qo

)
(6.110)

6.10 Re�ection symmetry

We have seen that the re�ection symmetry has interesting consequences in properties

of aberration in axial symmetric case. Hence, we will describe the re�ection symmetry

of the aberrations polynomials in general case.

Let us denote Ω̂α the re�ection with respect to the plane −xsinα+ycosα =0, the

plane that arises from the plane xz by the rotation around the z-axis about the angle

α. Such a transformation can be described by composition of transformations

Ωα = R̂−αΩ̂0R̂α (6.111)

Now we �nd the transformation property for the complex polynomial nPj;l
m .

It is easy to see that Ω̂0Lz =−Lz; hence,

Ω̂0
nPj;l

m =Ω̂0(L
n
2−j
z

2jPj;l
m ) = (−1)

n
2−jL

n
2−j
z Ω̂0

2jPj;l
m (6.112)

The transformation Ω̂0, which in fact changes the sign at y and py, is equivalent to

complex conjugation for the complex polynomials 2jP l;j
m . Hence, using (58)

Ω̂0
2jPj;l

m = 2jPj;−l
m (6.113)

and combining previous results we �nd

Ω̂0
nPj;l

m =(−1)
n
2−jL

n
2−j
z

2jPj;−l
m =(−1)

n
2−j nPj;−l

m . (6.114)
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The transformation property of nPj;l
m according to Ω̂α can be found

Ω̂α
nPj;l

m = R̂−αΩ̂0R̂α
nPj;l

m = R̂−αΩ̂0e
ilα nPj;l

m =(−1)
n
2−jeilαR̂−α

nPj;−l
m = (6.115)

=(−1)
n
2−je2ilα nPj;−l

m

There are two interesting cases, the �rst one α = kπ/l then

Ω̂k π
l

nPj;l
m =(−1)

n
2−j nPj;−l

m (6.116)

and the second α =π/2l+kπ/l then

Ω̂ π
2l +k π

l

nPj;l
m =−(−1)

n
2−j nPj;−l

m . (6.117)

These properties can be used for description of transformation properties of real

polynomials. First we will focus our attention to polynomial nCj;l
m

Ω̂α
nCj;l

m =Ω̂α2j−1( nPj;l
m + nPj;−l

m ) = (−1)
n
2−l(e2ilα nPj;−l

m +e−2ilα nPj;l
m ) (6.118)

hence,

Ω̂k π
l

nCj;l
m = (−1)

n
2−j nCj;l

m (6.119a)

Ω̂ π
2l +k π

l

nCj;l
m =−(−1)

n
2−j nCj;l

m (6.119b)

and similarly for the polynomial nSj;l
m

Ω̂α
nSj;l

m =Ω̂αi2j−1( nPj;l
m − nPj;−l

m ) = i(−1)
n
2−l(e2ilα nPj;−l

m −e−2ilα nPj;l
m ) (6.120)

hence,

Ω̂k π
l

nSj;l
m =−(−1)

n
2−j nSj;l

m (6.121a)

Ω̂ π
2l +k π

l

nSj;l
m = (−1)

n
2−j nSj;l

m (6.121b)

The previous equation completely describes the re�ection symmetry of polynomials.

Unfortunately, from the re�ection symmetry of the optical system it is not possible to

�nd the refraction symmetry of the aberration coe�cients. It is caused by the anisotropic

e�ect magnetic �eld, which mixes the polynomials nCj;l
m with nSj;l

m . Similarly we can

proceed only in electrostatic case or in the light optics.
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7 Conclusion

The mathematical background of the Lie algebra method is the canonical perturbation

theory. There exists a signi�cant relationship between the factorization theorem and the

canonical perturbation theory which is shown in the part 5.4, where we extended the

Lie algebra method to the parameterization by the position in the object and aperture

plane which is often used in the electron microscopy.

In part 5.6. all described analytical perturbation methods were applied to a simple

example of a round magnetic lens. The calculation is not new but the reason for it is to

compare the di�erent approaches of the perturbation method. The comparison shows

that even though the formulation of the trajectory method is very straightforward, the

practical application is very demanding. On the other hand, there are no signi�cant

di�erences in complexity between the eikonal and the Lie algebra method.

During the next study I solved an issue of advisable classi�cation of the aberration

polynomials and their relationship (chapter 6). It was shown that the way of classi�ca-

tion is connected to the form of the paraxial approximation � it a�ects the relationship

among the aberration coe�cients. Because of the complexity of general system classi�-

cation, we aimed the e�ort to the classi�cation of stigmatic systems. The classi�cation

of the aberration polynomials is described as a representation of the Lie group adjoint

to the algebra of the quadratic polynomials that were determined by the quadratic part

of Hamiltonian. This representation is explicitly presented. The symmetry of aberration

coe�cients according to the re�ection is also discussed.

Periodical systems were the subject of the next study. A typical system is an accel-

erator. We investigated a method for determination of the normal form of Hamiltonian

which is used for description of the global stability of the system. These results were pub-

lished in Nuclear Instruments and Method in Physical Research [34]. Unfortunately, this

subject is not mentioned in the thesis as the length of the work would grow too much.

Furthermore, the article that is connected to the thesis provides the basic orientation.

The properties of the analytical perturbation methods were tested on the case of a

round magnetic lens. We could not �nd any more simple system. For example, trivial

systems such as top-hat �eld is very simple in paraxial approximation but far from

trivial for calculations of aberrations. The methods for systems with the straight line

optical axis and periodical systems were compared separately.
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In general, in case of systems with the straight optical axis, it can be said that

the trajectory method is applicable for the �rst perturbation. It means that either

calculation of the second order of aberration for systems that contain dipole or sextupole

�eld or the calculation of the third order of aberrations for systems that do not contain

such �elds. In case of the second and higher perturbation, the method is rather lengthy.

Moreover, the method provides no view into the structure of aberration coe�cients

like mutual dependency or independency of the aberration coe�cients. The aberration

integrals of the vanishing coe�cients have a form that does not seem to lead to zero from

the �rst point of view. We must use integration by parts to show that such coe�cients

really vanish.

On the other hand, the eikonal method and the Lie algebra method are much more

advisable for the calculations of higher order aberrations. As both methods are formed

by using symplectic structure of the phase space, the relationship among the aberration

coe�cients is much more visible. However, whereas the procedure of derivation of the

second order perturbation relations (5.72) is not transparent, the calculation of higher

order perturbation in the Lie algebra method is a straightforward procedure.

Even though the numerical values of the aberration coe�cients do not have to be

dependent on the method used, it does not mean that the form of derived aberration

integrals is also identical. However, they can be transformed into the identical form by

using integration by parts. Moreover, the Lie algebra method provides insight into the

structure of the aberration polynomials � by using symplectic classi�cation we can

describe the relationship among aberrations and �nd out which �elds in�uence a given

aberration coe�cient.

While the Lie algebra method is not often used for description of systems with the

straight optical axis, the situation is completely di�erent in description of the periodical

systems. The Lie algebra method is the most commonly used method in accelerator

physics. This is caused by the di�erent form of the problems solved. The global stability

of the system is the most important property that is studied. This problem is connected

with the theory of dynamic systems in which the Hamiltonian formalism is very common

and powerful tool. The stability of the phase space according to the transfer map is

investigated and the normal form method is the standard tool used for the description

of the stability of the system [19, 35]. Nevertheless, it cannot be said that the use of the

Lie algebra method is really necessary.
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Finally, we can say that the trajectory method is not advisable for calculation of

higher order of aberration coe�cients. However, I was not able to show any great dif-

ferences between the eikonal method and the Lie algebra method. I showed that intro-

duction of the Lie algebra structure into the polynomial space brings some advantages,

mostly used in the aberrations classi�cation or in the study of periodical systems, but

the calculation of the aberration coe�cients is still a lengthy work that cannot be done

without the use of computer programs for symbolic computation like MAPLE or MAX-

IMA.
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8 Appendix: The Hamiltonian transformation

Although the transformation rule for the Hamiltonian at a z-dependent canonical trans-

formation has been derived by Cary [12], for completeness it will be summarized here.

We will start from the rule valid in z-independent case and the extension to z-dependent

case will be derived using the extended phase space formalism.

Let us consider two canonical coordinate systems w , ~w with 2 degrees of freedom

and an s-dependent Lie transformation w = e:g(~w ,z):~w describing their relationship w =

e:g(~w ,z):~w . Although the transformation rule for Hamiltonian in z-independent case does

not di�er from the functions' one, in this case it might not be obvious. Fortunately, each

canonical z-dependent system with two degrees of freedom is equivalent to the canonical

z-independent system with three degrees of freedom known as the extended phase space

[10], in which z is one of canonical variables with canonical conjugate momentum pz. A

vector in the extended phase space then reads W =(w ,z,pz) and the Hamiltonian takes

form H̄ =H +pz. The canonical transformation e:g(~w ,z): is represented by a canonical

transformation e:g( ~W ):E which does not depend on independent variable t in the extended

phase space. Notation for the Lie operator in the extended phase space : f :E � with the

Poisson bracket de�ned according to [g,h]E = [g,h]+ ∂g
∂z

∂h
∂pz

− ∂g
∂pz

∂h
∂z were used.

The transformed Hamiltonian then reads

˜̄H( ~W ) = e:g( ~W ):E H̄( ~W ) (8.1)

and using the coordinates in the original phase space one can write

H̃(~w ,s)+ p̃z = e:g(~w ,s):E (H(~w ,s)+pz) =

= e:g(~w ,z):H(~w ,z)+
∂g

∂z
+

1
2
[g,

∂g

∂z
]+

1
6
[g,[g,

∂g

∂z
]]+ ···p̃z

H̃(~w ,z) = e:g(~w ,z):H(~w ,z)+

1∫
0

dθeθ:g:(~w ,z) ∂g(~w ,z)
∂z

, (8.2)
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what is the sought for expression. The situation is described by the diagram

(w ,z) H(w ,z)

H̄(W )=H(w ,z)+pz

''

?

��

(W ,t) H̄(W )

e:g( ~W):E

��
(~w ,z)

e:g(~w,z):

OO

H̃(~w ,z) ( ~W ,t)

e:g( ~W):E

OO

˜̄H( ~W )

H̃(w̃,z)=−pz

gg

.

(8.3)
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