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Abstrakt

Obsahem této práce je souhrn studia D0-brán [1, 2, 3], jenž patř́ı k fun-

damentálńım objekt̊um strunové teorie. Prvotńım impulsem byl článek [4]

zabývaj́ıćı se jejich chováńım při ńızkých energíıch pouze v plochém prostoru.

Z tohoto článku zopakujeme odvozeńı Hamiltoniánu, na který poté aplikujeme

numerickou metodu [5] k nalezeńı základńıho stavu. Během tohoto procesu

jsme našli v článku [4] chybu. Naše numerické řešeńı v porovnáńı s odlǐsnou

numerickou metodou popsanou v článku [6, 7, 8] poskytuje přesněǰśı řešeńı.

Výsledky byly publikovány v [9].

Daľśım přirozeným krokem je studium zakřiveného superprostoru, kde mohou

D0-brány netriviálně [10] interagovat s pozad’ovými poli. V této době ještě

nebyl znám supersymetrický popis této nejobecněǰśı konfigurace při ńızkých

energíıch a proto jsme se o něj chtěli pokusit. Mezit́ım řešeńı tohoto problému

bylo zveřejněno článkem [11, 12, 13] a to bylo d̊uvodem k zastaveńı našeho

odvozováńı.

Uspořádáńı práce nerespektuje časovou posloupnost našich jednotlivých krok̊u

při studiu. Začneme krátkým shrnut́ım článku [11] a poté uvid́ıme jak tyto

výsledky odpov́ıdaj́ı výchoźımu bodu v článku [9]. T́ımto postupem chceme

doćılit hlubš́ıho pochopeńı dané problematiky.

Kapitola 1 popisuje naši konvenci a nezbytné matemtické zázemı́, které se in-

tenzivně využ́ıvá v přehledu článku [11] uvedeném v kapitole 2. Konkrétně

se budeme zabývat superprostory [14] a supervnořeńım [15, 16, 17, 18, 19,

3, 20]. Hlavńım výsledkem jsou pohybové rovnice pro D0-brány (uvedeme

obecné řešeńı D0-brány v plochém prostoru), které jsou ekvivalentńı rovnićım

źıskaným dimensionálńı redukćı supersymetrické Yang-Millsovi teorie [4]. Tyto

rovnice jsou dále kvantovány a řešeny v článku [9], který je přiložen a jehož

přehled obsahuje posledńı kapitola.



Abstract

We review the work done on the D0-branes [1, 2, 3] which are fundamental

objects of the string theory. The starting point of this study was inspired

by the paper [4] which is focused on their low-energy limit in flat space. We

repeat the derivation of the Hamiltonian in the paper on which we apply a

numerical method [5] to find a ground-state wave function. We also found a

mistake in the paper [4] during this process. Our solution seems to be more

accurate compared to another numerical method [6, 7, 8]. The result was

published in the paper [9].

A natural next step is to explore curved superspace where the D0-branes

can interact with the supergravity background fields [10] in a non trivial way.

There were no supersymmetric description at the low-energy limit of this most

general configuration thus we wanted to attempt to create it. Meanwhile the

solution of this problem is published in the paper [11, 12, 13] and we halted

our derivation.

The presentation in this thesis is not chronological. We begin with a summary

of the paper [11] and then we see how its result corresponds to the starting

point of our paper [9]. The purpose of this approach is to give a deeper

understanding of the whole picture.

The section 1 describes our convention and necessary mathematical calculus

extensively used in the summary of the paper [11] which is given in the section

2. Namely, we deal with curved superspaces [14] and the superembedding

[15, 16, 17, 18, 19, 3, 20] approach. The main result from this section is the

D0-brane equation of motion (we give a complete D0-brane solution in flat

space) which are equivalent to the ones that came up from a dimensional

reduction of a supersymmetric Yang-Mills theory [4]. These equations are

quantized and solved in the attached paper [9]. Its summary is in the last

section.
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1 Mathematical Fundamentals

1.1 Notation

We use following indices and symbols in the paper.

m,n, . . bosonic coordinate indices

a, b, . . . bosonic frame, noncoordinate, indices

µ, ν, . . . fermionic coordinate indices

α, β, . . fermionic frame, noncoordinate, indices

M,N, . . superspace coordinate indices, i.e. M = (m,µ)

A,B, . . superspace frame, noncoordinate, indices, i.e. A = (a, α)

i, j, . . . vector indices transforming in group SO(n)

ρ, σ, . . . gauge indices

Ω̂ . . . . pullback of the form Ω

We strictly underline all target superspace indices in the section 2 to distinguish them

from non underlined worldvolume ones if not explicitly stated otherwise.

1.2 Space Geometry

There is a nice geometrical description of the curved superspaces which is coordinate free

notation. We start with the more familiar purely bosonic space where we illustrate this

approach and then we add the fermionic part to generalize it to superspace. Finally the

non chiral IIA supergravity is discussed.

Let us have a manifold with local coordinates Xm. The indices m,n, . . . are strictly

used only for coordinate basis. We use vielbeins Em
a(X) to define a new frame

Ea = dXmEm
a

where the dXm are the basic forms in the coordinate basis and the indices a, b, . . . labels

the frame vectors. The matrix Em
a is invertible and its inverse Ea

m satisfies

Em
aEa

n = δm
n , Ea

nEn
b = δa

b .

This inverse generates new corresponding basis tangent vectors

Ea = Ea
n∂n

which complete the basic building block for the following geometry description.

The vielbeins allows to write an arbitrary metric gmndX
m⊗ dXn = gabE

a⊗Eb where

the gab is diagonal. This is in general not possible in a coordinate basis. This fact helps

to introduce spinors in curved space for example.
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The external derivative on wedge product is defined as

d(Ω ∧Θ) = Ω ∧ dΘ + (−)pdΩ ∧Θ

for arbitrary form Ω and p-form Θ.

To describe the geometry of the space we introduce the covariant derivative acting on

covariant V a and contravariant Va vectors as

∇V a = dV a + V b ∧ ωb
a ; ∇Va = dVa − ωa

b ∧ Vb (1.1)

where the ωa
b ≡ Ecωca

b is a connection form [25, 27] generating the corresponding torsion

Tbc
a and curvature Rdca

b which define the following two forms

T a ≡ 1

2
Ec ∧ EbTbc

a

Ra
b ≡ 1

2
Ec ∧ EdRdca

b

satisfying

T a = ∇Ea

Ra
b = dωa

b + ωa
cωc

b

together with Bianchi identities

∇T a ≡ Eb ∧Rb
a

∇Ra
b ≡ 0 .

The connection above can be identified with a connection in the coordinate basis. These

connections generate the same parallel transport for a given vector field V aEa = V n∂n.

Moreover if the covariant coordinate derivative is compatible with the metric

∇g = 0

the ωab is antisymmetric in the indices.

Let us illustrate the above purely mathematical description on something physical.

We pick up a Riemannian manifold to see what happens. We can always choose vielbeins

to diagonalize the metric

Ea
mEb

ngmn = ηab .

A structure group G acts on the frame bundle. Clearly the Lorentz group does not change

the right hand side of the equation above. We can now rewrite the covariant derivative

(1.1) in the following compact form

∇a ≡ Ea +
1

2
ωab

cGc
b

where the matrices Gc
b are generators of the Lorentz group vector representation for the

covariant or contravariant vectors. The covariant derivative algebra reads

[∇a,∇b] = −Tab
c∇c +

1

2
Rabc

dGd
c

and fully determine the geometry. This is the coordinate free notation.

2



1.3 Superspace

It is convenient to work with superspace in order to create a manifestly supersymmetric

theories. Superspace is a manifold which has extra fermionic anticommuting variables θµ,

i.e. the local coordinates reads ZM = (Xm, θµ). Similarly to the previous convention the

indices M,N, ... and µ, ν, ... are strictly used only for coordinate basis. An arbitrary form

dZM has grade, the bosonic |dZm| = 0 and the fermionic |dZµ| = 1. The graded wedge

product between the superforms is defined as

dZM ∧ dZN = −(−)MNdZM ∧ dZN

to reflect the anticommuting property of the fermionic coordinate and where the expo-

nent MN is the product of the form grades. We use again vielbeins EM
A(Z) or rather

supervielbeins to define superinvariant frames

EA = dZMEM
A

where the dZM are basic forms in the coordinate basis. The indices A,B, . . . containing

also fermionic part α, β, ... solely labels the frame vectors. The matrix EM
A is invertible

and its inverse EA
M satisfies

EM
AEA

N = δM
N , EA

NEN
B = δA

B .

This inverse generates the corresponding basis tangent vectors

EA = EA
N∂N . (1.2)

Based on our previous discussion we can directly write the covariant derivative

∇A ≡ EA +
1

2
ωAB

CGC
B (1.3)

where the ωA
B ≡ ECωCA

B is a connection superform and the GC
B are now appropriate

generators of a structure supergoup G. The corresponding algebra

[∇A,∇B} = −TAB
C∇C +

1

2
RABC

DGD
C

contains the symbol [, } which is the graded commutator. The torsion and curvature

TA ≡ 1

2
EC ∧ EBTBC

A

RA
B ≡ 1

2
EC ∧ EDRDCA

B

satisfy again

TA = ∇EA

RA
B = dωA

B + ωA
CωC

B (1.4)

together with the Bianchi identities

∇TA ≡ EB ∧RB
A

∇RA
B ≡ 0 . (1.5)

3



1.4 Supergravity

We now restrict the structure supergroup G on the superspace [21, 22, 23, 24, 25] and see

the implication of this selection. Then we apply the formalism to the IIA supergravity.

We choose the Lorentz group. This choice simplifies the covariant derivative (1.3) and

moreover the two in general independent Bianchi identities (1.5) are equivalent under this

choice [26]. An infinitesimal transformation under the Lorentz group δLB
A changes the

vector V A by

δV A = V BδLB
A (1.6)

where

δLa
α = 0 , δLα

a = 0 . (1.7)

Thus there is no mixing between fermionic and bosonic indices. In fact the V a transforms

in the vector representation and the V α in a spinor representation of the Lorentz group.

The connection superform ωB
A in (1.3) and also the curvature superform (1.4) has the

same structure as δLA
B in (1.7). This property is of course preserved when performing

Lorentz transformation in the tangent superspace [25]

δωA
B = ωA

CδLC
B − δLA

CωC
B − dωA

B .

This allows us to write the covariant derivative (1.3) in the following form

∇A = EA +
1

2
ωAa

bGb
a (1.8)

where the Gb
a are the Lorentz algebra generators in an appropriate representation. The

algebra of the supercovariant derivatives is

[∇A,∇B} = −TAB
C∇C +

1

2
RABc

dGd
c .

1.5 IIA

Let us take a closer look at the IIA nonchiral superspace which is locally parametrized

by coordinates ZM = (Xm, θµ, θµ̇) where m = 0, . . . , 9 and µ, µ̇ = 1, . . . , 16. An arbitrary

tangent vector V = V M∂M can be written in the basis (1.2) generated by the vielbeins

EA
M

V = V AEA = V aEa + V αEα + V α̇Eα̇ . (1.9)

The V a transforms in the vector representation of the Lorentz group SO(1, 9) and the

fermionic part V α is the chiral spinor in the 16 and V α̇ is an antichiral spinor in the 16.

Please see the Appendix for the spinor notation.
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The IIA superspace is described by a supervielbein EA
M , a connection superform ωb

c,

a gauge superform A, a 2-superform B and a 3-superform Γ [25, 27]. The super covariant

derivative reads

∇A = EA +
1

2
ωAa

b (Gb
a) + AAZ (1.10)

where the Z is the gauge central charge. Their super algebra is

[∇A,∇B} = −TAB
C∇C +

1

2
RABc

d (Gd
c) + FABZ . (1.11)

The gauge field strength

F =
1

2
EB ∧ EAFAB

defined by the relation

F = dA− A ∧ A (1.12)

satisfies Bianchi identity

∇F = 0 . (1.13)

The Bianchi identities (1.5) are not changed for the new super covariant derivative (1.10)

as the torsion and curvature super forms (1.4) are singlets under the gauge group.

The trivial solution of all Bianchi identities [23] is the flat superspace where all the

background fields vanish. In spite of the fact that R = 0 there are non zero components

of the torsion

Tαβ
a = −iσa

αβ , Tα̇β̇
a = −iσ̃a

α̇β̇ (1.14)

which cannot be gauged away. Please take a look at the Appendix for the definition of

the σ matrices (A.2).
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2 Superembedding Approach

2.1 Superembedding Strategy

We show how a simple geometrical embedding condition generates the equation of motion

for the D0-brane. This procedure can be done for arbitrary Dp-branes but to obtain the

equation of motion is not guaranteed in general [11]. Also, the equation of motion for

multiple D0-branes in the low-energy limit is derived. In fact we repeat the derivation

from the paper [11] and add a complete D0-brane solution in flat superspace.

The superembedding which describes the Dp-brane is the map between two super-

spaces. The first one is a worldvolume and the other is a target superspace. The target

superspace for p even is [1, 28] the above described IIA superspace containing the men-

tioned odd superforms.

The worldvolume bosonic dimension is p + 1 while the fermionic dimension is half of

the target superspace fermionic dimension because the presence of the Dp-branes breaks

half of the supersymmetries due to kappa symmetry [29]. We underline the target space

indices to clearly distinguish them from not underlined worldvolume ones.

The superembedding

ZM(Z) (2.15)

generates a pullback of the form EA

ÊA ≡ EBÊB
A (2.16)

given by the superembedding matrix

ÊB
A = EB

M∂MZ
M(Z)EM

A . (2.17)

The simple geometrical embedding condition mentioned in this section preamble is

Êα
a = 0 (2.18)

which tells us that the pullback of the bosonic form Ea is also only bosonic in the worldvol-

ume superspace. The Dp-brane described by the superembedding (2.15) naturally splits

the tangent bundle spanned by the frame Ea into two linearly independent parts T ⊕N .

The T is the tangent bundle spanned by the pushforwarded frame Ea and the N is the

normal bundle (its vectors are perpendicular to the T ). To have an elegant description of

this split we transform the basis Ea in the following manner. The transformation matrix

ua
r(Z) satisfying

ua
rur

b = δa
b , ur

aua
s = δr

s (2.19)

where r ≡ (a, i) is a composed index is chosen in such way the Ea ≡ ua
aEa are basis

vectors of the T and Ei ≡ ui
aEa span the perpendicular complement N as discussed

above.
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Thus an arbitrary tangent vector V = V aEa can be always written as V = V aEa +

V iEi. We see the original target tangent space symmetry SO(1, 9) reduces to SO(1, p)⊗
SO(9−p) when the Dp-brane is present. This is the reason why we exceptionally omitted

the underline for the superspace index r because its first components a transform exactly

under the same vector representation of the SO(1, p) as the worldvolume indices a and

the index i is the new one transforming under the SO(9− p).

The matrix ua
r(Z) generates the new forms on the cotangent bundle in the target

superspace

Er ≡ Eaua
r (2.20)

where their pullback satisfies

Êi = 0 , Êa = ea (2.21)

and also transform [30] the target superspace connection Ωb
a (we use the big Ω for the

target space in contrast with ω for worldvolume) to the new one

Ωr
s = dur

aua
s + ur

bΩb
a ua

s = ∇ur
aua

s . (2.22)

The curvature superform is similarly changed to

Rr
s = ur

aRa
bub

s .

2.2 Induced geometry

The induced geometry on the worldwolume is discussed here. The pullback

Êa = eaua
a

can be derived from the definitions (2.20,2.21). We demand to have induced torsion T a

on the worldsuperspace [31]

T̂ aua
b ≡ T b = deb + ec ∧ ωc

b . (2.23)

This is satisfied if the connection superform on the worldvolume is

ωc
b = duc

a(Z)ua
b + uc

bΩ̂b
a ua

b . (2.24)

Compared to the (2.22) this relation reads

ωc
b = Ω̂c

b ,

i.e. this worldvolume connection superform is equal to the pullback of the adapted target

superspace connection superform. However the solution (2.24) is not unique. Let us write

the bosonic part of the superform ωc
b explicitly and insert it to the (2.23). We see the

7



last term ec ∧ eaωac
b is not changed when we add to the ωc

b another form eaφac
b where its

components φac
b are symmetric in the lower indices.

This superconnection form implies the worldvolume curvature (1.4)

ra
b = ua

aR̂a
bub

b − Ω̂a
i ∧ Ω̂i

b .

We are interested in the Ω̂a
i because this superform plays crucial role in equation of motion

derivation as we will see. There is useful relation between Ω̂a
i and the target superspace

torsion T a. It can be found from the pullback of the following relation

∇Ei = Ea ∧∇ua
i + T aua

i (2.25)

and the result is

0 = −ea ∧ Ω̂a
i + T̂ aua

i . (2.26)

2.3 The D0-brane Case

We focus on the D0-brane from this moment. The other higher dimensional Dp-branes

are considered in [11]. The equation of motion is derived here.

The world superspace parametrized by ZM = (x0, ην) has only one bosonic coordi-

nate and ν = 1, . . . , 16. Remember that this is due to the fact the Dp-brane breaks

half of the supersymmetries and the target superspace has two 16 dimensional spinors.

Superinvariant frames are

e0 = dx0 − ieα(σ0)αβη
β

eα = dηνδν
α

where the ηβ = ηνδν
α is defined. The supervielbeins EM

A can be directly read from the

forms above.

To calculate the important superform Ω̂0
i from the equation (2.26) we have to know

the target superspace superform T a. The general solution [23, 24] of the (1.5) for our

target superspace is

T a = −1

2
iEα ∧ Eβ(σa)αβ −

1

2
iEα̇ ∧ Eβ̇ (σ̃a)α̇β̇ .

To go ahead we choose the pullback of the fermionic form. We can always choose

coordinates where

Êα ≡ eα , Êα̇ = eβhβ
α̇ + e0χα̇ . (2.27)

We are ready to insert all the necessary data into the equation (2.26). The term

proportional to eα ∧ eβ gives us

0 = (σa)αβua
i + (hσahT )αβua

i (2.28)

8



and for e0 ∧ eα we have

0 = (Ω̂γ)0
i − i(hσ̃a)γα̇χ

α̇ua
i .

Let us take a closer look at the connection form Ω̂0
i where we based on the previous

equation can write

(Ω̂)0
i = ieγ(hσ̃a)γα̇ χ

α̇ua
i + e0(Ω̂0)0

i .

When we compare equations (2.16,2.18,2.21) we get

Êa = e0u0
a = e0Ê0

a (2.29)

and from (2.22) we obtain

(Ω̂)0
i = dÊ0

aua
i + Ê0

bΩ̂b
aua

i . (2.30)

This relation can be thought of as the equation of motion for the D0-brane because it

contains the second derivative of the embedding (2.15). We have to be very careful here

as not all solution of this equation are physical. The physical solution must satisfy the

superembedding condition (2.18)

Êα
a = 0 .

The problem now is to calculate the left hand side of the equation of motion. The still

unknown bosonic hβ
α̇ function in the (2.30) can be found with help of target superspace

background 3-superform H. Its pullback

Ĥ = 0

for a D0-brane [11]. The general H in IIA superspace is [23, 24]

H =
1

2
iEa ∧ Eα ∧ Eβ (σa)αβ −

1

2
iEa ∧ Eα̇ ∧ Eβ̇ (σ̃a)α̇β̇ + . . .

where the dots means wedge products which contains at least two bosonic Ea and such

terms will not contribute to the pullback for the D0-brane. The terms in Ĥ proportional

to e0 ∧ eα ∧ eβ implies

0 = ua
a(σa)αβ − ua

a (hσ̃ah
T )αβ . (2.31)

We now have two equations (2.28,2.31) for hβ
α̇. There is a unique solution to these

equations

hβ
α̇ = (σb)β

α̇ub
0 = (σb)βαub

0 ,

where the lowering of the dotted index is explained in the Appendix.
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Now the unknown fermionic function χα̇ in the (2.30) can be solved from the torsion

target space superforms. We can insert the deα obtained from

T̂α = deα + eβ ∧ Ω̂β
α (2.32)

to the T̂ α̇ and the result is

T̂ α̇ = d(eβhβ
α̇ + e0χα̇) + (eγhγ

β̇ + e0χβ̇) ∧ Ω̂β̇
α̇

= T̂ βhβ
α̇ + eβ ∧ (dhβ

α̇ + hβ
β̇Ω̂β

α̇ − Ω̂β
γhγ

α̇) + T 0χα̇ + e0 ∧ (dχα̇ + χβ̇Ω̂β
α)

≡ T̂ βhβ
α̇ + eβ ∧Dhβ

α̇ + T 0χα̇ + e0 ∧Dχα̇ (2.33)

where we have used the (1.4,2.27) and defined the covariant derivative D. It can be shown

that (see the Appendix)

Dhβ
α̇ = −(σb)β

α̇ub
iΩ̂i

0 . (2.34)

The χα̇ can be solved [11] from the (2.33) for a target superspace background [23, 24].

To simplify the notation for the following sections we define matrices

(σ0)βα ≡ (σb)βαub
0 , (σi)βα ≡ (σb)βαub

i (2.35)

and similarly for the σ̃. For example we can rewrite the (2.34) in the simple form

D(σ0)β
α̇ = −(σi)β

α̇Ω̂i
0

and there is also a relation for the σi

D(σi)β
α̇ + (σj)β

α̇Ω̂j
i = −(σ0)β

α̇Ω̂0
i .

2.4 D0-brane Case Solution in Flat Space

Let us take a closer look at the simplest case, the flat IIA target superspace. We solve

the equation of motion (2.30) and, as highlighted previously, select only solution which

are physical, i.e. fulfil the superembedding condition (2.18).

The flat IIA superspace has torsion (1.14) superform T a nonzero and the rest vanish.

Moreover we choose coordinates in which the connection ΩB
A = 0.

This simplifies the relation (2.33) and the part proportional to the eα ∧ eβ gives us

χα̇ = 0. Consequently the terms e0 ∧ eβ implies

Ω̂0
i = 0 .

The equation of motion reads

0 = dÊ0
aua

i (2.36)
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where Ê0
a is given by (2.17). To simplify the following steps we choose the transformation

matrix ua
i(Z) to be constant. The most general solution of equation (2.36) is

X i = Cix0 +Di(η) (2.37)

where we have defined the X i ≡ Xmδm
aua

i, Ci is a constant and Di(η) is an arbitrary

function of the fermionic coordinates. We now show that this solution is not physical in

general. Before we insert this solution into the superembedding condition (2.18) we need

to write the rest of the superembedding corresponding to our pullback choice (2.21)

Xm = x0u0
aδa

m + Fm(η)

θµ = ηµ

θµ̇ = hµ
µ̇ηµ (2.38)

where the arbitrary function Fm(η) of the fermionic coordinates are related to the previous

Di(η) through the X i definition above. This superembedding induces the right torsion

(2.23). The superembedding condition restrict the most general solution (2.37) only to

the

X i = Di

where the Di is constant. This is the only physical solution. The only static D0-brane

could surely not be the case in another general coordinate. To have solutions representing

D0-brane moving with constant speed we have to look at the equivalent solution in the

Xm coordinate

Xm = x0u0
aδa

m + Fm (2.39)

where Fm is constant.

It would also be very interesting to try to find similar solutions for other simple

superspaces, for instance for the AdS-like ones [32].

2.5 Multiple D0-branes

We know the equation of motion (2.36) for one D0-brane. A derivation of a similar

equation for multiple D0-branes is not known yet. However there is the method given in

[11] how to find the low-energy limit in the IIA supergravity target space. The main idea

is to have a process which can be easily generalized to the curved superspace and which

for the flat one generates results that one gets from super Yang-Mills theory with gauge

group SU(N) [33]. We show here only the flat superspace derivation just to confirm the

correspondence.

To describe multiple D0-branes we introduce non-Abelian gauge SU(N) connection

superform on the worldvolume

A = e0A0 + eαAα

11



with the field strength (1.12)

F =
1

2
eα ∧ eβFαβ + eα ∧ e0F0β

satisfying the Bianchi identity (1.13) ∇F = 0 which in purely fermionic components reads

∇(αFβγ) + T(αβ
0F0γ) = 0 (2.40)

and in one bosonic

∇0Fαβ −∇βF0α −∇αF0β = 0 . (2.41)

The low-energy system of the multiple D0-branes should be described by a SU(N) gauge

valued field Xi transforming in the vector representation of the SO(9). We have a natural

choice (2.35) how to compose this term to the field strength

Fαβ = 2i(σi)αβXi .

The induced torsion has to satisfy (2.23) and for our target torsion (1.14) reads

Tαβ
0 = −2i(σ0)αβ .

Inserting the field strength antsatz into the Bianchi identity (2.40)

2i(σi)(βγ∇α)Xi − 2i(σ0)(αβF0γ) = 0 (2.42)

and demanding further relations

∇αXi = i(σi)αδΨ
δ

F0γ = −i(σ0)γδΨ
δ

we see the left hand side of the (2.42) reduces to the Fierz Identity (A.4) and thus the

Bianchi identity is satisfied. Let us try to insert the relations above into the second

Bianchi identity (2.41) which now reads

2i(σi)αβ∇0Xi = −(σ0)αδ∇βΨδ − (σ0)βδ∇αΨδ .

We can solve the ∇αΨδ from this Bianchi identity

∇αΨδ = (σ̃0σj)δ
α∇0Xj + Cδ

α (2.43)

however the solution is not unique because we can add an antisymmetric matrix C. To go

further we can calculate the matrix C from the covariant derivative algebra (1.11) acting

on the Xi

{∇α,∇β}Xi = 2i(σ0)αβ∇0Xi + [Fαβ, Xi]

12



which is equal to

2i(σ0)αβ∇0Xi + [Fαβ, Xi] = i(σi)βδ∇αΨδ + i(σi)αδ∇βΨδ .

This equation has the solution

∇αΨδ = (σ̃0σj)δ
α∇0Xj +

1

4
(σ̃jσk − σ̃kσj)δ

α[Xj, Xk]

which is consistent with the previous one (2.43) and moreover contains the antisymmetric

matrix explicitly.

We can calculate the equation of motion for the Xi with the following algebraic (1.11)

manipulation on intermediate results, i.e. the previous results is used in the

{∇α,∇β}Ψδ = 2i(σ0)αβ∇0Ψ
δ + [Fαβ,Ψ

δ]

and this implies

∇0Ψ
δ − (σ̃0σj)δ

ε[Ψ
ε, Xj] = 0 (2.44)

where we have also used

[∇β,∇0]Xi = −[F0β, Xi]

for derivative commutation. Applying the ∇α on the equation (2.44) gives us

∇α∇0Ψ
δ − (σ̃0σj)δ

ε∇α[Ψε, Xj] = 0 (2.45)

where we can again use a similar commutator

[∇β,∇0]Ψ
δ = −{F0β,Ψ

δ} .

The equation of motion can be extracted from the equation (2.45). In fact we obtain

two separate sets. The first set is obtained from the trace on fermionic indices and the

second set comes from trace of the (2.45) multiplied by (σ̃0σl)β
δ

0 = [∇0X
j, Xj] +

i

2
(σ0)αβ{Ψα,Ψβ}

0 = ∇0∇0X
l − [[X l, Xi], X

i]− i

2
(σl)αβ{Ψα,Ψβ} . (2.46)

Remember the fields X l,Ψα are in the adjoint representation of the gauge group SU(N).

We show how these equations are related to an Yang-Mills theory now.
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3 D0-branes Quantum Chemistry

3.1 Introduction

We provide here a short summary of the paper [9] in our current notation and see the

correspondence to the result above. The low-energy limit of N D0-branes is described

by a dimensional reduction of N = 1 supersymmetric Yang-Mills theory with gauge

group SU(N) in 1+9 dimension to 1+0 dimensional space [33]. We compare equations

of motion comming from the reduced action and the result (2.46) of the previous section.

They should be equivalent as this was the goal of the derivation in the target flat IIA

superspace. A simplified system of two D0-branes is quantized and solved after this check.

The D0-branes has the gauge group SU(N) with the generator basis Tρ where we

choose the Killing form to be identity matrix and the structure coefficinets are

[Tρ, Tσ] = fρσ
τTτ .

The reduced action contains fields Xi,Ψ
α, A0 in the adjoint representation of the gauge

group SU(N). The Xi = Xi
ρTρ transforms in the vector representation of the SO(9)

group and the Ψα is Majorana-Weyl chiral spinor in 1+9 dimension. All these fields are

only functions of one variable, let us use x0. The action [9] reads

S =
∫

dx0
(

1

2gs

Ẋi
ρẊi

ρ +
i

2
ΨαρΨ̇αρ − 1

4gs

(fρστXi
σXj

τ )2 +
i

2
fρστXi

ρΨασ(σi)αβΨβτ

+
1

gs

fρστẊi
ρA0

σXi
τ +

1

2gs

(fρστA0
σXi

τ )2 − i

2
fρστA0

ρΨασΨατ
)
. (3.47)

The field A0
ρ is a Lagrange multiplier and its variation generates the equation of motion

in the gauge A0 = 0

0 =
1

gs

[Ẋ i, Xi]
ρ +

i

2
{Ψα,Ψα}ρ ≡ Gρ (3.48)

which is a constraint in fact. The proper equations of motion generated by the variation

of the field Xi
ρ is in the A0 = 0 gauge

0 =
1

gs

∂0∂0X
lρ − 1

gs

[[X l, Xi], X
i]ρ − i

2
(σl)αβ{Ψα,Ψβ}ρ .

We see that these two equations for gs = 1 are exactly the same as the set (2.46). On

quantum level the operator Gρ defined in the constraint (3.48) restcricts our Hilbert space

to vectors which satisfy

Gρ |Ψ〉 = 0 , (3.49)

i.e. our physical space is gauge invariant because Gρ are gauge generators.
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3.2 Toy Model

We continue only with the simplified system of two D0-branes in three dimensional

Minkowski space and hope that this gives us the basic behavior and also an understanding

of the full problem. The Hamiltonian derived from the action (3.47) takes the form

H =
gs

2
(πi

ρ)2 +
1

4gs

(ερστX1
σX2

τ )2

−1

2
ερστX1

ρ (χσχτ − χ̄σχ̄τ )− i

2
ερστX2

ρ (χσχτ + χ̄σχ̄τ ) (3.50)

where Xi and the complex fermion χ are in the SU(2) adjoint representation. Of course

we have to impose gauge invariance (3.49). In fact, the gauge invariance complicates

things somewhat since we would like to separate out gauge invariant degrees of freedom

from pure gauge degrees of freedom in our quantum mechanical operators Xi
ρ and πi

ρ.

Let us focus on physical content of the Xi
ρ. It contains six components (the gauge

index ρ runs over three values and the space index i = 1, 2). We know that we can remove

three of these variables using gauge transformations so only three variables are observable.

These three variables should describe the relative position of two pointlike objects in two

space dimensions. We draw the conclusion that one of the physical variables do not have

the interpretation of a coordinate but rather as some internal auxilliary degree of freedom.

To get some further insight into this problem it is neccesery to investigate the bosonic

vacuum of the theory. It is possible to explicitly separate the gauge degrees of freedom

from Xi
ρ by decomposition in matrix form [34]

(X)ρi = (ψ)ρr(Λ)rs(η)si . (3.51)

Here the matrix ψ is an group element in the adjoint representation of SU(2). Thus when

the gauge group acts on Xi
ρ, ψ just changes by ordinary gauge group multiplication (from

the left). This decomposition has the advantage that all the gauge dependence sits in ψ

and all the other matrices are gauge invariant.

In an analogous way we have separated out the dependence on rotations in space.

Namely, performing an SO(2) rotation in space we have an element of SO(2) acting from

the right on the matrix Xρi. Thus we can separate out the dependence on the angle in

space (we call the angle φ) by saying that η is a group element of SO(2).

We are left with the matrix Λ which by construction is both gauge and space rotation

invariant

Λ =

λ1 0
0 λ2

0 0

 .

The bosonic potential in (3.50) is gauge and rotation invariant and in the new de-

composition coordinates depends only on two λi which have length dimension (Fig. 1).
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Figure 1: Bosonic potential

The parametrisation

λ1 = r cos θ; λ2 = r sin θ

is the simplest way how to obtain exactly one variable, r, with the dimension length,

which could represent the relative distance of the two branes. The dimensionless θ is the

auxilliary coordinate. The potential in this coordinate reads

1

8gs

r4 sin2 2θ .

Looking at the picture we can draw some interesting conclusions. If we fix a point on

the bosonic vacuum (a classical static configuration with minimum energy), that is on the

axes, we can study the behavior of the potential for small fluctuations of the auxilliary

variable θ. We see that for large r the θ fluctuation are very much suppressed but at

small r, θ will be allowed to fluctuate. This can be interpreted to mean that when the

branes get close to each other, they can start to move also in the θ direction. Thus, θ is

an auxilliary coordinate which is visible only when the branes come close together.

The above discussion included only the bosonic degrees of freedom, we should keep in

mind that the fermionic degrees of freedom can (and will) change this behavior somewhat.

In essence, the Pauli repulsion will try to spread out the wavefunction as much as possible.

3.3 Ground State

To find the ground state we will find all gauge invariant states with spin zero. The first

state is the vacuum state |0〉. Then we may act with the fermionic creation operators χρ

on the vacuum to find new states. The following states has total spin zero and they are

gauge invariant

|r〉 =
1

2
ψρr |ρ〉 =

1

2
eiφψρrε

ρστχσχτ |0〉 . (3.52)
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That is, they satisfy

Gρ |r〉 = 0 .

The most general gauge invariant wavefunction with total spin zero can then be written

g(r, θ) |0〉+ fr(r, θ) |r〉 . (3.53)

We define the wavefunction on the interval θ ∈ [0, π/4] because the map (3.51) is one

to one here. It is not necessary to choose this particular interval, one could, for instance,

select the interval [−π/4, 0] instead of the above mentioned. Using the identification

θ̃ = −θ the Hamiltonian defined on the interval θ̃ ∈ [−π/4, 0] acting on the states with

total spin zero is connected to our original Hamiltonian on the interval θ ∈ [0, π/4] by the

unitary transformation

H(θ̃) = U †H(θ)U

where

U =


1

1
−1

1

 .

It is also possible to consider other interval θ̃ ∈ [π/4, π/2]. Using the identification θ̃ =

π/2− θ the corresponding Hamiltonian can be also obtained by a unitary transformation

with the matrix

U =


1

−i
i

1

 .
The wavefunctions of course also transform under the unitary transformation

|Ψ(θ)〉 = U |Ψ(θ̃ )〉 . (3.54)

If we require that the wavefunctions be everywhere smooth, the above condition severely

restricts the possible wavefunctions and in particular the basis wavefunctions that we can

use. This principle was not used in [4] and hence the θ derivative of their groundstate

wavefunction at θ = π/4 is not well defined.

3.4 Numerical Method

We used [9] the numerical renormalized Numerov method [5] to solve the boundstate of

the Hamiltonian (3.50). A brief description of its application together with results are

presented here.
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The Numerov method can solve discrete spectra of a one dimensional operator of the

form

−1

2

∂2

∂x2
1 + V(x) (3.55)

which acts on L[a, b] ⊗ Cn with Dirichlet boundary conditions. One cannot directly

apply this method to solve the boundstate because the corresponding Hamiltonian is two

dimensional as we want to solve the uknown functions (3.53) depending on two variables

r and θ. The dependence on the other coordinates, the angles, has been already solved

by the requirement that we are studying only gauge invariant states with spin zero.

Let us sketch shortly how to modify our problem to be able to use the method. An

arbitrary wavefunction can be written in the form

|Ψ〉 =
∑
i,j

Ψij(r)Yij(θ)ei (3.56)

where {Yij(θ), j = 1, . . .} is a complete basis of functions in θ which satisfy the consistency

condition (3.54). To use this procedure on a computer we need to cut off the complete

basis to have a finite number of basis vectors

Yijei (no sum) (3.57)

where their expectation values gives us coupled equations for the radial part Ψij(r). This

practically leads to the desired one dimensional problem (3.55) (please see the paper [9]

for details).

It is not obvious how much our results for a fixed number of basis functions fit the

exact solutions which one would get using the complete basis. To get some intuition for

how the general solution would look like we will repeat the calculations increasing the

number of basis functions each time and hopefully one can extrapolate the result to the

exact case. At least we should be able to make an intelligent guess at the properties of

the exact solution. The groundstate of our Hamiltonian is a good test for the method

described above as it should have zero energy because of supersymmetry [35].

There are some results for the coupling constant gs = 0.1 in the table 1 where N is

the number of the test functions (3.57) and E is their corresponding groundstate energy.

The columns Np and Ep has the same meaning but they are related to the Wosiek method

[6]. We see here that the boundstate energies Ep are quite comparable but the number of

basis functions Np (which corresponds to our basis functions) increases drastically.

The energy dependence on N is approximately

E =
1.44

N
(3.58)

as was claimed in [6]. One can therefore predict the groundstate energy as a function

of the number of basis functions with very high accuracy. We therefore see that in any

concrete numerical calculation (using a finite basis) we do not expect to get zero energy.
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Np Ep N E

4+2 0.395 1+1 0.376
10+8 0.303 2+2 0.295
20+20 0.216 2+3 0.214

1540+440 10+10 0.075
11480+3080 20+20 0.037
37820+9920 30+30 0.025

40+40 0.018
50+50 0.014
80+80 0.008

Table 1: Results

Figure 2: Probability density

The picture (Fig. 2) is the probability density for the case with the highest number of

basis functions in the table. The domain of this plot is (r, θ) ∈ [0, 2.2]× [−π/4, π/4]. The

hill of the probability density is located at the boson potential valley (3.52) and isolines

represents sections for fixed r, θ and one for fixed density on each picture. The maximum

of the probability density of any constant r section is in the potential valley (θ = 0).

Notice that the global maximum is not at r = 0. This is probably an effect of the fermion

Pauli repulsion.

Increasing the number of basis functions, the only thing that happens is that the global

maximum moves slowly to larger and larger r at the same time as the whole wavefunction

becomes more spread out in r but more peaked in θ. One can assume that considering the

complete base (3.57) the ground state density will be the same near the origin as in the

picture and also will have the hills on the valleys of the potential which will be sharper
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and sharper when we follow the potential valley to large r. One can not conjecture in

this case the behavior of the hills by this numerical method. Rather one has to use other

methods [34] for the asymptotic behavior of the wavefunction at large r.

3.5 Summary

The purpose of the paper [9] was to find an approach how to calculate the boundstate of

two D0-branes. This we have achieved with good results. We have also calculated the

groundstate probability density near the origin with high accuracy which gives a basic

intuition about the physics of branes on the string scale. In particular about the meaning

of the auxilliary coordinates which become important at small distances between the

branes. It is for example interesting to observe that the most probable position of the

branes is not on top of each other but rather at some small distance away from each other.

This we understand as an effect of the Pauli fermionic repulsion.
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Appendix

Dirac Matrices

The Dirac matrices Γa for the SO(1, 9) group satisfy a Clifford algebra {Γa,Γb} = 2ηab

with the metric η = diag(−1, 1, . . .). We choose ten real

Γa =

(
(γa)α

β̇

(γ̃a)β̇
α

)
(A.1)

which can act on the already mentioned (1.9) spinors V α, V α̇. Numericaly, the matrices

for a = 0 read γ0 = I = −γ̃0 where the I is the identity matrix and for the other ones are

traceless symmetric matrices [36] such that γa = γ̃a.

It is convenient to define Pauli matrices(
(σa)αβ 0

0 (σ̃a)β̇α̇

)
= C

(
0 (γa)α

β̇

(γ̃a)β̇
α 0

)
(A.2)

where the matrix C is the conjugation matrix

C =
(

cαβ̇

cβ̇α

)
≡
(

I
−I

)
.

The Pauli matrices satisfy

(σa)αβ(σ̃a)βγ + (σb)αβ(σ̃)βγ = −2ηabδα
γ (A.3)

together with Fierz identity

(σa)(αβ(σa)γ)δ = 0 . (A.4)

Transformation

We start with transformation properties of the tangent vector V A (1.9) under the Lorentz

group together with spinor notation. Then the covariant derivative (1.8) is discussed.

We have already mentioned the V a transforms in the vector representation of the

Lorentz group SO(1, 9) and the fermionic part V α is the chiral spinor in the 16 and V α̇

is antichiral spinor in the 16.

The matrix Λ which transforms the vector V a and the matrix S which transforms

both spinors V α, V α̇ are related with each other [37]

Λb
aΓ

a = S−1ΓbS

where the Γa are the Dirac matrices. This relation for the infinitesimal transformations

δΛ ≡ 1/2δωcdM
dc, δS = 1/2δωcdL

dc implies

(Mab)c
dΓ

d = [Γc, Lab] . (A.5)
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The solution of this equation are generators

(Mdc)a
b = ηdaδc

d − ηcaδd
b , Ldc =

1

4
[Γd,Γc] . (A.6)

The matrix Ldc is block diagonal

L ≡
(
L+ 0
0 L−

)

for our Γa choice and moreover L+,T = −L−. We see that the spinors V α has the

transformation matrix L+ and V α̇ L−. There are also spinors Vα, Vβ̇ defined with help of

the conjugation matrix (
Vα

Vβ̇

)
≡
(

cαδ̇

cβ̇γ

)(
V γ

V δ̇

)
.

The spinor Vα has the transformation matrix numerically equal to L+ and Vα̇ to L−. This

is the reason why we can lower or raise indices in the manner Vα ≡ V α̇ and Vα̇ ≡ V α.

Covariant Derivative

We are ready to write the covariant derivative (1.8) more explicitly. For example

∇V a = dV a +
1

2
V b ∧ ωcd

(
Mdc

)a

b = dV a + V b ∧ ωb
a (A.7)

where the Mdc is the group generator from (A.6). This corresponds to our initial covariant

derivative definition (1.1). We have

∇V β = dV β +
1

2
V α ∧ ωcd

(
L+dc

)β

α

(A.8)

for the chiral spinor. Because of the identification Vα ≡ V α̇ it also holds ∇Vα = ∇V α̇

∇V β̇ = dV β̇ +
1

2
V α̇ ∧ ωcd

(
L−dc

)β̇

α̇

= dVβ +
1

2
Vα ∧ ωcd

(
L−dc

)
β

α = ∇Vβ .

Let us calculate the covariant derivative of the torsion component (1.14)

∇Tβγ
b = −i∇(σb)βγ

= − i
2
ωcd(M

dc)b
a(σ

a)βγ −
i

2
ωcd(L

−dc)β
ε(σb)εγ −

i

2
ωcd(L

−dc)γ
ε(σb)βε

= − i
2
ωcd(M

dc)b
a(σ

a)βγ +
i

2
ωcd(σ

b)εγ(L
+dc)ε

β −
i

2
ωcd(L

−dc)γ
ε(σb)βε = 0

(A.9)
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because the last line is numerically equivalent to the relation (A.5). We can use this result

to proove the equation (2.34)

Dhβ
α̇ = −(σb)β

α̇ub
iΩ̂i

0 .

The Dhβ
α̇ is equal to the pullback of the form ∇hβ

α̇ where the ∇ is the target superspace

covariant derivative. The form is

∇hβ
α̇ = ∇hβα = ∇(σb)βαub

0 + (σb)βα∇ub
0 = −(σb)βαub

iΩi
0 . (A.10)

where we used the fact ∇(σb)βα = 0 and the definition (2.22). The pullback of equation

(A.10) completes the proof.
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