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Preface

Gravitational Lensing

Although the affection of light by gravitational field was proposed rather long ago by

scientists (e.g. Laplace, [Lap]), mostly in analogy to massive particles behaviour, the actual

gravitational lensing has been born with Einstein’s work [Ein] from  regardless of the fact,

that the designation itself was incorporated by Lodge, ; the measurement of Hyades

stars apparent position in geometrical vicinity of Sun during  eclipse is famous.

The gravitational lensing, as comprehensively described e.g. in [Sch] is very successful in

providing reasonable results. There are two main regimes in which lensing occurs: the

strong one [Ehl], with multiple images rising and the weak one [Bar], when the light is bent to

but merely distort the beams. The first regime allows mainly to measure local properties of

deflectors [Koc] and provides the valuable information on statistics within their populations.

One example for all let be the Einstein cross 2237+0305 at z≈1.695 [Huc]. The second one

probes the large scale distribution of space inhomogeneities in a very effective way [Wae]

by measuring the share spectrum. In addition, microlensing provides us with possibility of

seeking for extra-solar planets [Alc]; the projects MACHO and OGLE must be stated here.

Recently, the trend of mathematically more sophisticated treatment appears, see e.g. [Pet],

mostly using the caustic approximative of sources extended surface to observer sky map[Mol].

Though very potent, most of these approaches are however themselves only further approx-

imations to relativistic optics – which is hereby defined as extension of geometrical optics

[Bor] to curved case, i.e. the covariant eikonal equation and lowest-order amplitude trans-

fer covariant equation. In this work, parts of aberrational formulation to relativistic optics

(which is exact from viewpoint of gravitational lensing) are studied.

Geometrical Optics

During the several hundred years of optics evolution, the aberration formulation has been

established as the most suitable and versatile mean of optical systems properties depiction.

After Petzval, the first systematical treatment of aberrational structure of wavefront was

given by Seidel, 1856 [Sei]. Nowadays, this treatment is utilised in the whole range from

public optical cameras production to charged particle optical instruments construction.

Many principal ideas of classical optics are valid in curved spacetimes as well, however

there are some, that cannot be treated therein. Yet, some of the latter can be redefined in

a generalised way, such that they were meaningful in curved cases and reducing to well

established ones in the flat case. The idea of (positive) focusing is abstract enough in this

sense, when requiring touching (in mathematical sense) of adjacent rays to occur. As the

focusing is of prime interest to all optics, we show in this work, how this can be dealt with
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via caustic study within curved spacetimes.
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Notation and Conventions

index sized mathematics in regular positions:

f (y−a) function arguments, where reasonable to avoid misunderstanding;

also, to distinguish from f ·(y−a)

roman versus bold mathematical (in)equations:

r=a particular value of e.g. radial coordinate

ϑ=π/2 geometrical object, in this case, equatorial (hyper)surface

df =0 triviality of a form, i.e. f,i=0

df =0 codimension one geometrical object, here a differential equation of a curve

’addition’ of integrals

−
b
∫

a

±
d
∫

c

f (y)dy =−





b
∫

a

f (y)dy±
d
∫

c

f (y)dy





derivatives

g,t≡
∂g

∂xt partial derivative

h;t≡ 1√
g

∂

∂xt
(
√

gh) covariant derivative

fz≡
∂f

∂z
however, where misleading is not possible only

The (Einstein) summation notation is used in non-roman indices. In the work, geometrical

units (c=1) are used, with the exception of utilising SI units where stated.

Typography

The main body of the work is set in full width. It contains all the derivations and main

results. In bold face, the highlights are typed.

In italic, examples, usually showing the validity of derived facts on basic simplifications

are given. Unless stated otherwise, the flat case is considered with x, y, z denoting the

Cartesian coordinates as well as xi; or (r, ϕ, ϑ) meaning the spherical coordinates with

most commonly (r, ϕ) being the polar coordinates on the equatorial section ϑ=π/2.

In other items, the usual typography conventions are obeyed.
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Introduction

This work deals with the procedure of establishing the geometrical optics extension into

curved spacetimes, i.e. the covariant optics; in the course of the work an aberration formulation

of covariant optics is developed.

The ideas are (re)constructed in such a way, that where the generalisations of well known

ones are needed, the definitions are provided in such a way, that these new objects and/or

definitions reduced to the well known forms from the flat case.

From the viewpoint of post-classical physics, optical quantities are divided into two groups:

the ones, that are affected by post-classicity (e.g. index of refraction, as discussed below) and

the ones that are left intact. The latter ones, among which the rays – that pass through fixed

points of spacetimes irrespective of observers – belong, can be called primary quantities.

From the same reason, (perfect) focusing belongs here to. The primary quantities are of

main interest to this work.

Owing to the fact that the most concern of this work is the creating of mathematical construc-

tions from basic parts of well-known physical theories, we state as little theory as possible;

this allows to keep the structure of the work compact and to devote attention in greater detail

to showing the consequences of these constructions and their connection with thoroughly

known results on circumstances that from the viewpoint of this work appear as special cases.

It is also to be stated, that the work itself is a theoretical one, i.e. the most important are

considered the calculations that can be hereby provided analytically. For this reason, the

results are kept on strictly theoretical level, however, all the constructions and calculations

presented are made ready for direct application to observational data in the case of interest.

To get a glance of the scope of problems touched by this work, the reader might want look

first to the section of Exercise and Applications, where the main results from Part One and

Part Two are utilised.

8
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Maxwell Equations and Debye Procedure in a General Spacetime

However much useful the four-potential one-form A may be in electro-magnetic field def-

inition, its use within general relativity must be careful. Also, while it appears preferable

to solve within a spacetime of dimension n a system of 2n PDEs of first order rather than

one of n PDEs of second order, we will make use of the Maxwell equations in form with

the electro-magnetic field two-form F. The benefit resides also in its calibration invariance.

If the four-potential description becomes desired, obviously F=dA with Lorentz calibration

Ai
;i=0 is valid.

We restrict our attention to electro-vacuum Maxwell equations

∗dF = 0 ∧ ∗ d ∗ F = 0, (1)

over metric manifold (M, g), where ∗ stands for differential forms dualisation using complex

Hodge star: to the general definition

∗ : ω ∈ Λp
CT ∗M → η ∈ Λ(m−p)

C T ∗M | ∗ ∗ ≡ (−1)p(m−p)id

with m=dimM≥p, the coordinate evaluation reads

η ı1..ım−p = gı1ℓ1
..gım−pℓm−p εℓ1..ℓm−p1..p ω1..p

. (2)

Although the version without complex conjugation is also valid, we stick to the expression

stated above.

We point out the well-known fact, that the number of independent equations within (1) is

only six, as well as the number of unknown is. Hence, it is sufficient to treat only three

components from each set. Considering the structure of the equations, it appears a good

idea to omit the both time components. Also note, that the system (1) is insensitive to

dualisations of electro-magnetic field tensor F: a physical interpretation in cases it makes

sense to speak of them, is that after interchanging the role of electric and magnetic parts

between each other, the field as a whole remains to be a solution to (1).

The usual intensities describing the electro-magnetic fields can be for observer along a

world-line with four-velocity u defined as components of one-forms E, H, where

F = E ∧ u + ∗(H ∧ u).

For the intensities themselves we after little operation have

E = ∗(u ∧ ∗F) H = ∗(u ∧ F ) .

9
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We shall solve the Maxwell equations (1) using the Debye procedure: we expect F in a form of

expansion

F =
[

F0 + λ
i F1 +

(λ
i

)2
F2 + · · ·

]

Reeiψ/λ

in powers of a small parameter λ, where Fn∈Λ2
CT ∗M as we admit polarisation effects.

Setting the last ansatz into Maxwell equations, we obtain

∗dF=
{

i
λ ∗(dψ∧F0)+

∞
∑

n=0

(λ
i

)

n
[

∗dFn+∗(dψ∧Fn+1)
]

}

Reeiψ/λ=0

∗d∗F=
{

i
λ ∗(dψ∧∗F0)+

∞
∑

n=0

(λ
i

)n[∗d∗Fn+∗(dψ∧∗Fn+1)
]

}

Reeiψ/λ=0

Regrouping the terms, we get for the terms of same power to parameter λthe system

λ−1 : dψ∧F0=0, dψ∧∗F0=0

λn≥0 : dFn+dψ∧Fn+1=0, d∗Fn+dψ∧∗Fn+1=0

where the dualisation was performed where necessary, without loss of generality. Indeed,

∗u=0⇔u=0: 1) u=0⇒∗u=0 is evident from the definition; 2) Let v=∗u=0. Then ∗v=0

according to 1), however, ∗v=±u from definition. We shall henceforward use the dualisation

order freely.

In components, the lowest order equations are

ψ,[αF 0

βγ] = 0 ψ,κF 0
τκ = 0,

respectively. From the independent subset from the first set we can find e.g. the axial

components of F ,

ψ,0F
0

ab = F 0

0[bψ,a] .

Plugging this expression into the second set, we obtain (in matrix notation)

[

ψ,ıψ, − (ψ,kψ,k)δı


]

F 0

0ı = 0 .

This homogeneous square system of linear equation will have non-trivial solution only if its

determinant vanishes:

ψ,0ψ,0(ψ,kψ,k)2 = 0

Hence, we can for the propagating waves (ψ,0 6=0) corollary, that the lowest order of Debye

expansion implies the eikonal equation

ψ,kψ,k = 0 (3)

10
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and also the orthogonality of propagation direction and the wavefronts: electromagnetic

waves are transversal.

As can be seen by differentiating (3), the rays also form the isotropic geodesics thanks to fact,

that light congruencies are scalar (ka=ψ,a⇒ka;b=kb;a).

The formulas of the successive order of Debye expansion bring the lowest-order amplitude

transport equation, e.g. in the form of polarisation vector parallel transport along the rays

and the scalar amplitude transport. In this work, however, we will be mostly concerned

by focusing of light and we will adopt another tool of studying the geometrical optics light

intensities divergences.

Thus, these two lowest orders form a smallest consistent approximation of Maxwell equa-

tions, which is called a geometrical optics. It is however important to notice, that the higher

corrections affect the amplitudes only, not the eikonal.

The formulas derived above can describe a testing electro-magnetic field within a general

spacetime.

11
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The Particular Metrics Used

In this work, two main groups of metrics are used as ones of sufficient generality. First, it is

the general (n+1)-dimensional stationary metric

ds2 = gtt(xa) dt2 − 2gta(xa) dt dxa − gab(xa) dxa dxb, a, b = 1, . . . , n (4)

which comprises the most important insular solutions (Kerr-Newman black hole with all its

special cases including (the flat) Minkowski spacetime). The most important special case

gta=0 of metric (4) is the general static spacetime

ds2 = gtt dt2 − gab dxa dxb .

Secondly, in some parts of the work, it is the metric

ds2 = c2 dt2 − a(t)( dw2 + f 2
k (w)( dϑ2 + sin2ϑ dϕ2)), (5)

where

fk(w) =























1√
k

sin(
√

kw) k>0, w∈〈0,π〉

w k=0, w∈〈0,1〉
1√
−k

sinh(
√
−kw) k<0, w∈〈0,∞) .

which comprises the cosmological (FLRW) solutions. A common special case to both previ-

ous metrics is the flat spacetime.

Often, general static d-spherically symmetric sub-case of (4) is used:

ds2=gtt(r)c2dt2−grr(r)dr2−r2(dΩd)2,

(dΩd)2=
d
∑

i=1

[

(dϑi)2
i−1
∏

j=1

sin2ϑj
]

,
(6)

here written in higher dimensional spherical coordinates. The particular cases of the last

metric are the generalised Schwarzschild solution

ds2 =
(

1 −
rd−1
g

rd−1

)

c2dt2 − 1

1 −
rd−1
g

rd−1

dr2 − r2 ( dΩd)2,

where

rd−1
g =

16π
d

M

Sd
,

12
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with Sd the area of unit d-sphere, and for r≤r0 the perfect fluid solution

ds2 =

[

3

2

√

1 − rg

r0
− 1

2

√

1 − rgr2

r3
0

]2

c2dt2 − 1

1 − rgr
2

r3
0

dr2 − r2( dΩd)2, (7)

both valid in spacetimes of arbitrary dimension d+2. Note that the perfect fluid solution is

valid irrespective of dimension.

Within examples, mostly the flat spacetime metrics are used, usually in Cartesian, or spher-

ical coordinates, respectively:

ds2=c2dt2−
∑

i

(dxi)2 ds2=c2dt2−dr2−(dΩd)2

Also, the Reisner-Nordstrom solution

ds2 =
(

1 − rg

r

)

c2dt2 − 1

1 − rg

r

dr2 − r2( dϑ2 + sin2 ϑ dϕ2), (8)

for a charged static black hole has been used. As a general resource for the information on

Einstein solutions, [Ste] can serve.

A brand new class of physically reasonable solutions to Einstein equations is discovered in

chapter The Maxwell’s fish-eye and gravitational lensing.

13
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Part One
Covariant Optics

The first block of the work deals with establishing the covariant optics. We choose this des-

ignation for the true optics treatment of geometrical optics extension into curved spacetimes.

For optics, of highest interest is the focusing and hence, while in general relativity the small-

est obstructions are connected with obtaining the optical information finding coordinate-

separated solutions to the covariant eikonal equation (3) (when such solutions exist, of course),

this equation will form the basis of our study.

On the other hand, the same optical information is covered by the wavefronts knowledge,

we shall present constructions, that utilise them too. The wavefronts can be theoretically

obtained from the ray systems from the last paragraph by means of Legendre transformation.

However, within general relativity, it is even in the simplest cases disabled by mathematical

obstructions.

Summarised, the eikonals, wavefronts and caustics are sought for in this first part of the

work, and, particularly, the formulas are developed, which connect the objects mentioned.

First, eikonal equation is studied from mathematical point of view as a PDE, which gives

natural rise to the existence of distinct ’types’ of eikonals. Afterwards, the main two com-

plementary types of eikonals are studied with their consequences: the coordinate represen-

tation eikonals and the momentum representation eikonals, or shortly the coordinate eikonals

and momentum eikonals, respectively. The point, where mathematical difficulties arise with

switching from one to the other representation – by means of Legendre transformation – is

pointed out.

Consequently, the wavefronts family and rays family are explored as basic objects of coordi-

nate and momentum representations, respectively. Continuing to solve the mathematical

problems, the candidates for these objects are involved and treated.

As a final solution to problems with changing the representation in use, the eikonal Laplace-

ans are obtained. Namely, the Laplacean of coordinate eikonal is found generally, using

momentum representation formulas only.

At last, this Laplacean is shown to be in direct connection with caustic, which in turn shows

to be a constant Laplacean of momentum eikonal. Also, these formulas are connected with

intensity transfer via optical scalars and the relation of curvature of wavefronts to these

matters is discussed.

14
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Eikonal Equation as a PDE

Let us study the (generally nonlinear) partial differential equations of the first order, re-

stricted to two dimensional basis (x,y):

f (x, y, z(x, y), p ≡ zx, q ≡ zy) = 0 . (9)

First of all, mathematically, the PDE according to (9) is not concerned by the physical content

of the coordinates used. In a (five-dimensional) space of independent geometrical variables

(x,y,z,p,q) the elements

f (x0, y0, z0, p, q) = 0

constitute an object of codimension one, namely, for (x0,y0,z0) fixed, a curve in the (two

dimensional) space of momenta. With the physical meaning of the variables (p,q) it is a set

of (x0,y0,z0)-located vectors.

~x

p q

f(x0,y0,z0,p,q)=0

x

y

z

z−z0=p(x−x0)+q(y−y0)

The planes to which these vectors are perpendicular are given by z−z0=p(x−x0)+q(y−y0).

As the last equation is one-parametric, these (point-fixed) planes shape a formation; its

envelope is a conical surface – the surface of Monge.

The equation of one-parameter family φ(x,y,λ) of curves envelope is given by φ=0∧ φλ=0.

Using parameterisation (p(λ),q(λ)) we obtain

φλ : p′(x − x0) + q′(y − y0) = 0

for the planes considered. The solution of this system of (linear) equations in non-degenerate

case p′q−pq′ 6=0 reads

x − x0 =
q′

p′q − pq′ (z − z0) y − y0 =
p′

p′q − pq′ (z − z0),

15
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which is the parametric form of a (part of a) cone, while the cone is defined as a set of lines

going through a fixed point and given (closed) curve not containing that fixed point. Such

definition is really satisfied by the last expressions: with z−z0 fixed, the right-hand sides

form the parametric expression of the cone profile, which is upon freeing z−z0 consequently

but vertically scaled. (This cone is of course a double one, concretised by the PDE form.)

In this way, a PDE can be given an interpretation of space field of (Monge) cones. Its solution

then, is every surface, that touches the local cones. Such surfaces are called integral surfaces.

If re-parametrised to (p,q(p)), from implicit derivative formulas we obtain the cone expres-

sion as

x − x0 = −
fp

qfq + pfp
(z − z0) y − y0 =

fq

qfq + pfp
(z − z0) .

These cones degenerate for quasi-linear PDE: the numerators are independent then of mo-

menta, for, in suitable notation, the most general quasi-linear equation gets

pfp(x, y, z) + qfq(x, y, z) = u(x, y, z) .

Owing to their form, the denumerators are independent of momenta as well, and, hence,

the whole envelope embodies with every plane z=z0 the only cross-point – the envelope

gets (generally oriented) line. Should the quasi-linear PDE be homogeneous, changing the

procedure but slightly, the similar result would be obtained, this time showing the (line)

envelope horizontal specially. In both these cases, the solution to PDE chosen is unique.

The eikonal equation in two dimensions is a special case within the family of PDEs followed:

when considering a space projection, we obtain purely quasi-quadratic non-homogeneous

PDE of the first order, i.e. an equation of a form

a(x,y)p2 + 2b(x,y)pq + c(x,y)q2 = u(x,y), (10)

with generally non-degenerate coefficients. The cone for this equation, e.g. in parametrisa-

tions (p, q(p)), reads

u(x0,y0)(x − x0) = −2(ap + bq)(z − z0) u(x0,y0)(y − y0) = 2(cq + bp)(z − z0) .

Eikonal equation projection (10) – which can be rewrited as (ap+bq)2−(b2−ac)q2=au –

degenerates (into two quasi-linear ones) in case b2=ac: after such substitution, parameteri-

sation of the profile is independent of momenta.

Note, that the singular integral, given by f =0 ∧ fp=0 ∧ fq=0 is in non-degenerate case of a

form p=q=0 if u=0 (in full, not time projected case, this corresponds to trivial eikonal ψ=0),

16
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and it exists not, otherwise. In degenerate case, we obtain ap+bq=0 if u=0, and it exists

not, otherwise.

The non-uniqueness of PDR solution can then be interpreted such, that the space field

of cones can be connected by integral surfaces touching the cones from ’different sides’.

Physically, this is driven by type of constants present in the solution. For eikonal equation,

we will in further pick two main cases, namely, when eikonal contains only momentum

constants and, when eikonal contains only coordinate constants. Corresponding eikonals

we shall label momentum eikonals and coordinate eikonals, respectively.

A special case occurs in one-dimensional case, when the Monge cones field reduces into

field of lines – such can be connected in but a single way. Then, all eikonals (particularly

the momentum and coordinate ones) merge, and the eikonal equation has a unique solution

(up to signs and additive constant).

As an illustration, consider the spherical wave in two dimensions. A coordinate eikonal

(apart the additive constant) reads

ψ = ωt ± ω
√

r2 + r2
0 − 2rr0 cos (ϕ − ϕ0)

and the momentum eikonal under same circumstances reads (as can be in this simple case

easily verified using the Legendre transformation)

ψ = ωt ±
∫

√

ω2 − Ψ2

r2
dr ± Ψϕ .

If coordinate ϕ is suppressed, both these solutions reduce to

ψ = ωt ± ω(r − r0),

which indeed is the solution to one dimensional eikonal equation. It is worth a note, that to

achieve last formulas, formally, both Ψ=0 and ϕ=ϕ0 must be set, together with partial usage

of integration constant in the second case (which of course does not restrict the additive

one).

Generally, the eikonal equation on a line,

gtt(ψ,t)
2 − 2gtxψ,tψ,x − gxx(ψ,x)2 = 0,

can be in stationary cases separated using ψ,t=ω, which yields solutions

ψ = ωt − ω
∫

gtx ±
√

(gtx)2 + gttgxx

gxx dx .

Note, that the constant ω becomes automatically a multiplicative one, this behaviour is

generic. Also note, that the double signs, occurring in example above, are valid only in static

case, i.e. when gtx=0 is added hereby. As the signs before separated parts of momentum

eikonal rule the orientation of a ray in that coordinate, it is seen, that the directions of a ray

in each coordinate are no longer arbitrary in stationary cases.

17
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Eikonals As Complete Integrals

By a complete integral of eikonal equation in (n+1)-dimensional spacetime we understand a

function ψ(xk,cj) with k, j=1,...,n such, that

ψ;kψ;k = 0
∣

∣

∣ det

(

∂2ψ
∂xγ∂cδ

)

6= 0 (11)

i.e. the rank of its Hessian is maximal. This maximality allows to re-label the constants

cδ→bδ(cγ ), if only the number of degrees of freedom within the constants does not drop. As

a consequence, the succession among constant is (mathematically) irrelevant, or – in another

of simplest cases – it allows

c1, . . . , cη → b · f (c2, ...cη), c2, . . . , cη . (12)

This particular transformation will be used later. A complete integral, though covering a

small class of PDE solutions only, theoretically allows to obtain the general solution of a PDE,

that covers all the PDE solutions, with generally the only exception of its singular integral,

which is not a special case to general solution.

The singular integral ψs for general eikonal equation (3) is yielded from ∂(ψ,jψ,j)/∂ψ,j =0,

which gives ψ,j =0. Hence, the singular integral reads ψs=const and we can thus conclude,

that from physical point of view, all solutions to eikonal equation are given by any of its

complete integrals, while the constant solution is of no relevance.

The (bi)characteristics of eikonal equation

∂ψ
∂cγ

= constγ

constitute the ray equations canonically connected with the wavefronts ψ=const. As for the

wavefronts, note, that the above eikonal is defined between arbitrary (two) points, however,

physically, the phase change is constrained along the rays. For non-singular momentum

eikonal ψ(xi,cj), the time projection of eikonal equation characteristics

πj = 0, πj ≡ ∂ψ/∂cj − constj (13)

forms a (hyper)surface of codimension n−1 within (2n−1)-dimensional space. This hy-

persurface – thus of dimension n – is designated enhanced ray (hyper)surface. The wavefronts

defined on this surface in addition by ψ=const are thus of codimension n, i.e. are of dimen-

sion n−1. The rays themselves are always one-dimensional objects.

Apart the formal possibility of Legendre transformation carrying the momentum and co-

ordinate eikonals between each other the last system of equations also formally allows to

18
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translate the eikonal into one in ray coordinates, where it contains physical information as

well. The meaning of ray coordinates is such, that in eikonal, only parameters labelling the

rays within their family and one parameter to pick the position along the rays are present.

While such eikonals emerge only upon using ray equations, the correct phase change is

guaranteed: the number of space coordinates is left so low, that any ray can connect any two

points chosen by them. Such an eikonal can also be called an eikonal along ray.

Consider the (momentum) eikonals

ψ − ψ0 = ω(t − t0) − (−1)mk(x − x0) − (−1)l
√

ω2 − k2(y − y0) .

The ray equation gets

∂

∂k
: −(−1)m(x − x0) +

(−1)lk
√

ω2 − k2
(y − y0) = 0,

whence – to actually perform the Legendre transformation to coordinate eikonals – we could

find the value of parameter k,

k = (−1)uω(x − x0)
/

√

(x − x0)2 + (y − y0)2 .

As non-equivalent modification was performed, the sign (ruled by value of integer constant

u) has to be precised by check in the ray equation, giving

sgn(x − x0) = (−1)u(−1)m+lsgn(y − y0) .

Plugging the expression for k into eikonal, we obtain

ψ = ω(t − t0) − ω
(−1)m+u(x − x0)|x − x0| + (−1)l(y − y0)|y − y0|

√

(x − x0)2 + (y − y0)2
,

which, using a small trick, can be written as

ψ = ω(t − t0) − ω
(−1)m+u(x − x0)2 |x−x0|

x−x0
+ (−1)l(y − y0)2 |y−y0|

y−y0
√

(x − x0)2 + (y − y0)2
.

Plugging now calibration of u, we finally obtain

ψ = ω(t − t0) − ω(−1)lsgn(y − y0)

√

(x − x0)2 + (y − y0)2 .

We could however use the ray equation to except the coordinate y from the eikonal:

(y − y0) = (−1)m+l

√

ω2 − k2

k
(x − x0) .

Then, we would obtain

ψ = ω(t − t0) − (−1)m
ω2

k
(x − x0) .

The pair (k,x) now forms the ray coordinates, for k describes which of the rays is considered

(looking at ray equation,
√

ω2−k2/k is its tangent, tanφ) and x states where on this
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particular ray we are. Note, that the second term in last equation is indeed correct phase

difference, while the eikonal can be rewritten as

ψ = ω(t − t0) − (−1)mω
ω
k

(x − x0) . = ω(t − t0) − (−1)mω
x − x0

sin φ
.

where the last fraction is actually the distance from the source. Note, that we shall repeat

the procedure listed above several times during the work, without necessity thus to go then

into this detail.

A caustic, defined as a subset of enhanced ray surface points in which the second is stationary

with respect to the subset of parameters, i.e.

|κjk| = 0, κjk ≡ ∂πj/∂ck = ∂2ψ/(∂cj∂ck), (14)

is thus of codimension n, similarly to wavefronts. However, unlike the rays and wavefronts,

that both are (n−1)-parametric families, the caustic is (n−2)-parametric. This is most plain

to see in two dimensional spaces: a (single) ray projections family parameter becomes a

parameterisation of caustic, which thus remains parameterless. In this case a single caustic

holds all the optical information for the system as will be shown later, hence the benefit if

describing the system by means of the caustic.

Let us now have an eikonal ψ(xi,cj), its characteristics πj =0, and caustic |κjk|=0. Consider

a point (canonical) transformation ψ(xi,cj)→ψ̃(xi,Cj). In new variables,

π̃j =
∂ψ̃
∂Cj

− Constj , κ̃jk=
∂2ψ̃

∂Cj∂Ck

While Constj =consti∂ci/∂Cj , in old variables there is

π̃j =
∂ψ
∂cl

∂cl

Cj

− Constj

and particularly

κ̃jk =
∂2ψ

∂ci∂cl

∂cl

Cj

∂ci

Ck
+

∂ψ
∂cl

∂2cl

∂Cj∂Ck
− constl

∂2cl

∂Cj∂Ck
=

∂2ψ
∂ci∂cl

∂cl

Cj

∂ci

Ck

and thus |κ̃jk|=|κjk||∂ci/∂Cl|2. It is seen, that caustics will in new variables emerge there

and only there, where in the old ones ⇔ the transformation considered is diffeomorphism.

On the other hand, shall a transformation Pi(pj) be canonical, its generating function ought

to be of a form F =qipi−QiPi; then, to hold the canonicity, qi=Qj∂Pj/∂pi has to hold.

As ∂Pj/∂pi=∂Cj/∂ci in our case, it is the property of Ci(cj) being diffeomorphic that

guarantees it is in the same time a canonical transformation, and the canonicity on the other

hand implies that Ci(cj ) is diffeomorphism. Summarised, the caustic is canonical invariant

of eikonal, at least in case of point transformations of eikonal constants.
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Note, that apart an additive constant, the solutions to eikonal equation are also left untouched

by a multiplicative constant. We can use this fact if we – using (12) – succeed to re-label

the constants within eikonal in such a way, that one of them becomes purely multiplicative.

Then, ray equation for this constant gives no further income, while it reads ψ=const.

In static spacetimes, on such circumstances, we can equivalently transit to study of the space

projection of eikonal only, i.e. to study the wavefronts. Moreover, the space and spacetime

Laplaceans of eikonal coincide and also, they coincide with Laplacean of wavefronts up to

this multiplicative constant.

Let us now evaluate the Laplaceans of the well known solutions in the flat spacetime. First

of all, in Cartesian coordinates, one momentum solution is

ψ1 = ωt − k(x − x0) −
√

ω2 − k2(y − y0),

i.e. ∆ψ1=0. The solution is however not unique – a coordinate eikonal

ψ2 = ωt − ω
√

(x − x0)2 + (y − y0)2

can be also found, whence ∆ψ2=−ω
/
√

(x−x0)2+(y−y0)2. In spherical coordinates, a

coordinate eikonal

ψ3 = ωt − ω
√

r2 + r2
0 − 2rr0 cos(ϕ − ϕ0)

exists, whence, by straightforward calculation, ∆ψ3=−ω
/

√

r2+r2
0−2rr0cos(ϕ−ϕ0),

which only demonstrates, that the geometrical content of the last two solutions is the same.

Note the role of multiplicative constant. The connection between these Laplaceans and wave

intensity course (as suggestive from the form of Laplaceans) shall be discussed later on.

21



Electromagnetic Waves in a Gravitational Field

Eikonal, Rays and Caustic

Let there be an N +2 dimensional static N -spherically symmetric solution to Einstein equa-

tions, valid in spacetime region Σ. In spherical coordinates (r, ϑi), i=1,2,...,N , this gener-

ally admits metric

Σ:ds2=gtt(r)c2dt2−grr(r)dr2−r2(dΩN )2,

(dΩN )2=
N
∑

i=1

[

(dϑi)2
i−1
∏

j=1

sin2ϑj
]

,
(15)

with c the speed of light. On a non-empty intersection σ with equatorial (hyper)surface

ı<N : ϑı=π/2 this brings

Σ|ϑı=π/2
= σ : ds2 = gtt c2dt2 − grr dr2 − r2 dϕ2, ϕ ≡ ϑN .

In the rest of the work we will restrict ourselves to this cross-section (as will be shown

later, this section is actual very general case to needs of optics). There, solutions to eikonal

equation ψ,kψ,k=0 of a form

Θσ : ψ − ψ0 =
ω
c

t − (−1)kpϕϕ − (−1)m
∫

√

ω2

c2

grr

gtt
− p2

ϕ
grr

r2
dr (16)

are for k, m integers its complete integrals (11), while their Hessian is non-zero. Conse-

quently, (16) may serve as a (momentum) eikonal. Individual terms in previous equation

change sign, whenever change in the direction of appropriate coordinate takes place along

the path studied. Denote a(pϕ) the value(s) of root under last square root. Due to positive

definiteness of metric coefficient(s) – as introduced in (15) – this yields

a(pϕ) :
ω2

c2gtt(a)
−

p2
ϕ

a2
= 0 . (17)

The particular eikonal realising a testing field point source at [rs, ϕs] is then

θσ :ψ(t,r,ϕ)−ψ0(t0,rs,ϕs)=
ω
c

(

t−t0

)

−(−1)kpϕ
(

ϕ−ϕs
)

−

−(−1)m
a
∫

rs

∓
r
∫

a

√

√

√

√grr(y)

(

ω2

c2gtt(y)
−

p2
ϕ

y2

)

dy
; (18)

the sign minus or plus between the two integrals depends on whether r=a on the ray lies

between the considered end-points of the ray, or not, respectively. The previous expression is

valid for regular points a either, so it is valid for all points within considered segment of ray.
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Following now the canonical treatment, the particular ray equation is then πσ=∂θσ/∂pϕ,

upon using the Liebnitz rule yielding

πσ :ϕ−ϕs=(−1)k+m

aZ
rs

∓
rZ

a

pϕ
√

grr

y2

s
ω2

c2gtt
−

p2
ϕ

y2

dy−

−(−1)k+m

 
∂a

∂pϕ
± ∂a

∂pϕ

!264vuutgrr

 
ω2

c2gtt
−

p2
ϕ

y2

!375
y=ro

(19)

which – thanks to the defining property (17) of rootial points and (parameter) constantness

of regular end-points – for all points a turns into

πσ : ϕ − ϕs = (−1)k+m

aZ
rs

∓
rZ

a

pϕ
√

grr

y2

s
ω2

c2gtt
−

p2
ϕ

y2

dy . (20)

The annihilation of last term in (19) has the interpretation such, that despite of acquired

discontinuity of integrand in rootial points, there is no discontinuity of ray itself in any

end-point. Also, it is seen that

dr

dϕ

∣

∣

∣

r=a
= 0,

hence as long as a is a root of odd multiplicity, r=a gets clear meaning of turning point on

a ray: here, the ray radial coordinate difference must change sign to keep the square-rooted

term non-negative for the ray to continue past this point.

The Legendre transformation to carry the transit to coordinate eikonal would mean to except

pϕ from (18) and (20). That, unfortunately, is not generally analytically possible. However,

it is simple to except ϕ−ϕs upon what one obtains an eikonal along ray – the object closest

to wavefront(s) description, that is generally available:

λσ : ψpϕ − ψ0 =
ω
c

(t − t0) − (−1)m
aZ

rs

∓
rZ

a

ω2√grr

c2gtt

s
ω2

c2gtt
−

p2
ϕ

y2

dy . (21)

Obtaining the caustic κσ=∂πσ/∂pϕ is not as straightforward as that of ray equation (19), for

now there remains a dependence of integral rootial end-points on a derivation parameter,

but discontinuity in the integrand in the same end-points is added. This precludes use

of Liebnitz rule - the way how to proceed general calculation is to remove the parameter
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dependence of the end-point(s). This can be done separately in the two integrals of (20) by

transformations

ξ1 = (y − rs)/(a − rs) ξ2 = (y − a)/(r − a);

differentiating the ray equation after transformations and consequently returning to original

variables we finally obtain a caustic

κσ : 0=

aZ
rs

gtt(ω2y2−c2gttpϕ2)
�
2g2

rr(
∂a
∂pϕ

pϕ−a+rs)+ ∂a
∂pϕ

pϕ(y−rs)(g′

rr−4g2
rr)
�

+pϕg2
rr

�
2c2g2

ttpϕy(a−rs)+ ∂a
∂pϕ

(y−rs)(ω2g′

tty
3+2c2g2

ttpϕ2)
�

2(a−rs)
√

grr
3g2

tty
5

vuut ω2

c2gtt
−

p2
ϕ

y2

3
dy∓

∓
rZ

a

gtt(ω2y2−c2gttpϕ2)
�
2g2

rr(
∂a
∂pϕ

pϕ−a+r)+ ∂a
∂pϕ

pϕ(y−r)(g′

rr−4g2
rr)
�

+pϕg2
rr

�
2c2g2

ttpϕy(a−r)+ ∂a
∂pϕ

(y−r)(ω2g′

tty
3 +2c2g2

ttpϕ2)
�

2(a−r)
√

grr
3g2

tty
5

vuut ω2

c2gtt
−

p2
ϕ

y2

3
dy .

(22)

(with prime meaning differentiation according to radial coordinate) if only last integrals

converge uniformly. The transformations used were linear; other approaches are possible,

e.g. transformations of type y=a±ξ2 would remove the singularity of integrands in turning

end-points. Of course, when there are no turning points present within the ray segment

under consideration, the caustic from (16) is simply

0 =

Z ω2√grr

c2gtt

drs
ω2

c2gtt
−

p2
ϕ

r2

3
. (23)

As an example consider Minkowski spacetime, which can be covered by a single metric

R2×S2 = Σ : ds2 = c2dt2 − dr2 − r2 dϑ2 − r2sin2ϑ dϕ2 .

According to (20), the ray equation on equatorial section is in such a case

πσ : ϕ − ϕs = (−1)k+m

aZ
rs

∓
rZ

a

pϕ dy

y2

.vuutω2

c2
−

p2
ϕ

y2
.
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To be able to profit from the general construction developed, let us prevent ourselves from

evaluating the last integral. In that way, at last, the caustic as (22) gets

κσ : (−1)k+m

 
1p

r2 − ̺2
± 1p

rs2 − ̺2

!
= 0,

with ̺=(pϕc)/ω non-negative without loss of generality. It is now clearly seen that before

the ray turning point of r=̺ as from (17), there lies the only caustic point – the source

itself at r=rs (the second coordinate ϕ=ϕs is obtained from the ray equation stated above

in this example). After turning point, there are no caustic points at all (in correspondence

with the beams constant divergence). Also, for the calculation presented, r≥̺ has to hold.

In this way, in the flat case, ̺ has directly the meaning of ray closest advance point towards

origin (turning point) radial coordinate. In further, we stick to this notation and will label

the rays by ̺. Also note, that by introduction of ̺, the constant ω turned multiplicative.

Parametric derivatives of singularity containing integrals

To generalise the method of obtaining the caustic (22), let us now study the calculation of

parametric (Riemann) integrals

I ≡
b(̺)
∫

a(̺)

f (y, ̺) dy (24)

containing singularity(ies) of integrand within integration path as well as the calculation of

their derivative with respect to parameter – such integrals often occur within ray equations,

when turning points are present, and their derivative is of interest when looking for caustics.

Of main interest to us is the derivative ∂I/∂̺ general construction without necessity to

evaluate the integral itself at the beginning of calculation, for in cases of interest, such

evaluation is seldom available. The task to do of course is to transform the integral so, that

general derivative lemmas may be applied.

Lemma. Let the function f (y, ̺) together with its partial derivative ∂f/∂̺ be

continuous within a≤y≤b, ̺0≤̺≤̺1. Then, for ̺0≤̺≤̺1 it holds

d

d̺

b
∫

a

f (y, ̺) dy =

b
∫

a

∂

∂̺
f (y, ̺) dy .

Lemma. (Liebnitz rule) In addition to presumptions of previous lemma, let

the functions u(̺), b(̺) be differentiable within ̺0≤̺≤̺1 and a≤u(̺)≤b,

a≤v(̺)≤b holds within that interval. Then, for ̺0≤̺≤̺1 it holds

d

d̺

v(̺)
∫

u(̺)

f (y, ̺) dy =

v(̺)
∫

u(̺)

∂

∂̺
f (y, ̺) dy + f (v(̺), ̺)

dv(̺)

d̺
− f (u(̺), ̺)

du(̺)

d̺
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The first Lemma holds for improper integrals either, if it is assumed that

b
∫

a

f (y, ̺) dy converges, and that

b
∫

a

∂

∂̺
f (y, ̺) dy

converges uniformly within ̺0≤̺≤̺1 (in such a case, the function f (y, ̺) and its

derivative ∂f/∂̺ are considered continuous only within a<y≤b, ̺0≤̺≤̺1 or

within a≤y<b, ̺0≤̺≤̺1). The integrand end-point possible discontinuity is the

crucial difference of the two Lemmas.

One of our possibilities is thus to remove the end-point (general) parameter dependence

using parameter-dependent transformation

h : y = h(ξ)

∣

∣

∣

∂h

∂̺
6= 0,

d

d̺
h−1(b) =

d

d̺
h−1(a) = 0 .

In this way, we arrive to the diagram

I=

∫ b(̺)

a(̺)
f (̺, y)dy

h∗

//

∂

∂̺

��

∫ h−1(b)

h−1(a)
(h◦f )h′dξ

(h−1)∗
∂

∂̺
��

∂I

∂̺
id

//

b(̺)
∫

a(̺)

(

h−1◦
[

h′ ∂

∂̺
(h◦f )+(h◦f )

∂h′

∂̺

])

(h−1)′dy

(25)

in which the left column has the meaning of calculating the derivative on evaluated integral.

Let then now the integral (24) exist. As I is Riemann integral, the set of singular points of

its integrand is of measure zero, hence the integral can be split into sum of integrals with

singularities of integrands in end-point(s) s only. If the individual integrals in the sum exist

(which is guaranteed in the case that the only singularity is lying in the end-point of I by the

existence of full integral (as is the common case in this work)), we can due to their common

behaviour devote our attention without loss of generality to a single integral

J = lim
λ→s(̺)±

λ
∫

a(̺)

f (y, ̺) dy,

where the approach direction in the limit is chosen to be from inside of the integration path.

As a particular choice,

h : y = (s − a)ξ + a .

26



Electromagnetic Waves in a Gravitational Field

if sufficient. While it is independent of integrand, it may serve as general tool for studying

the diagram (25). Carrying the transformation, we have

J = lim
λ→1−

∫ λ

0
f (̺, (s−a)ξ+a)(s − a) dξ .

and after derivating and returning to original variable we, using the diagram (25), have

∂J

∂̺
= lim

λ→s

∫ λ

a

{

∂f

∂̺
+

∂a

∂̺
f ′ +

[

(y − a)f
]′ ∂

∂̺
ln(s − a)

}

dy, (26)

where prime stands for partial derivative with respect to y. Here the general procedure

must be stopped, for we generally cannot presume the existence of separate limits if split

last integral. It is however clearly seen, that for integrals containing not singularities, the

last two terms of integrand could be integrated out and the Liebnitz rule be obtained.

Let us demonstrate the acquired results on a single example: let

J =

∫ ̺

r0

̺

y
√

y2 − ̺2
dy,

then ϕ−ϕs=J is the ray equation in the flat case. Evaluation of J is simple, and using the

direct way, one would obtain

∂J

∂̺
= 1
/
√

r2
0 − ̺2, (a)

let us however use the scheme derived. The general formula (26) gives, term by term

∂J

∂̺
= lim

λ→̺

∫ λ

r0

{

y
√

y2 − ̺2
3

+ 0 +
̺(−2y2r0 + r0̺

2 + y3)

y2(y2 − ̺2)(r0 − ̺)
√

y2 − ̺2

}

dy, (b)

and indeed, the calculation of

lim
λ→̺

∫ λ

r0

r0(̺2 + ̺y − y2)

(̺ − r0)(y + ̺)y2
√

y2 − ̺2
dy

e.g. using partial fractions, yields the correct result (a). It is worth a note, that the limits

of individual integrals in (b) do indeed not exist, as anticipated during general derivation.

Let us finally applicate the results acquired to the case of eikonals, i.e. the situation with

double signs:

Ĩ =

∫ a(̺)

r0(̺)
∓
∫ r1(̺)

a(̺)
f (̺, y) dy .

Let there the nature of the problem studied imply the impossibility to reach the region

r<a(̺), i.e. let r0, r1≥a(̺). In other words, a(̺) shall be the single turning point, an

infimum of radial coordinate rays can reach. Recall, that in case of eikonals, the upper sign

corresponds to the case of end-points separated on the ray by a turning point, and the lower
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one, when not. In the latter case, however, insertion of turning point is artificial and we are

interested, whether the formulas found would then reduce to usual derivative of integral

with respect to its parameter, while there are no singularities. (In case r0=r1 this reduction

is, of course, trivial.)

If the integral is to exist, then there has to exist a limit in the last expression. Then, also a

Cauchy principal value for the integral exists, moreover, the equality of all these values is

guaranteed. For a,b>̺ we can thus generally write

Ĩ = lim
ε→0+

{

∫ a(̺)+ε

r0(̺)
±
∫ r1(̺)

a(̺)+ε
f (̺, y) dy

}

.

If we are now to transform Ĩ , we have to use

h0 : y = (s + ε − r0)ξ1 + r0 a h1 : y = (s + ε − r1)ξ1 + r1 .

With these transformations we have

lim
ε→0+

(

∫ 1

0
f (̺, (s+ε−r0)ξ0+r0)(s + ε − r0) dξ0 ±

∫ 0

1
f (̺, (s+ε−r1)ξ1+r1)(s + ε − r1) dξ1

)

and, after carrying out,

∂Ĩ

∂̺
= lim

ε→0+

(

∫ s+ε

r0

[

∂f

∂̺
+

s′−r′
0

s+ε−r0
[(y−r0)f ]′+

∂f

∂y
r′

0

]

dy ±

±
∫ r1

s+ε

[

∂f

∂̺
+

s′−r′
+

s+ε−r1
[(y−r1)f ]′+

∂f

∂y
r′

1

]

dy

)

.

While with these end-points the integrands are not singular, we can owing to order of limit

and integration finally write

lim
ε→0+

(

∫ s+ε

r0

±
∫ r1

s+ε

∂f

∂̺
dy + f (̺,s+ε)[s′ ∓ s′] − r′

0f (̺,r0) ± r′
1f (̺, r1)

)

.

This is already the sought for result, while in the case of end-points not separated by turning

point, the upper sign is valid, which cancels the singular terms in front of the square bracket

before the application of limit and we would arrive to Liebnitz rule.
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Wavefronts and Rays Candidates

In general relativity, there is a strict distinction between rays and wavefronts in the sense

that, due to mathematical limitations, it is usually not analytically possible to switch from

one description to the other, even though we know, that these two one-parametric families

are locally perpendicular to each other.

Hence, to avoid the Legendre transformation, it is of great value to be able to find connective

formulas, that enable us to use single representation quantities during whole computation.

Namely to this task the following chapters are devoted.

A problem similar to previous one, is that in general relativity we usually don’t have the

’degree of freedom’ to manipulate the forms of the rays when acquired at all. This sort of

problems lies basically in the fact, that many transformations of the family equations are

describing the same geometrical objects, but do not have the same physical qualities (e.g. do

not fulfil eikonal equation). We thus have to generally distinguish very sharply the objects

(rays, wavefronts) from just candidates for these objects within general relativity. We shall

adopt this distinction right from this very beginning to avoid later confusion.

A good place to start with is the equation, stating that wavefronts are locally transversal

to rays. Actually – to catch a glimpse of forthcoming computations – if we for a moment

restrict ourselves to the flat case of two dimensions, we can say, that wavefronts and rays

families are an example of isogonal lines, i.e. the families of plane curves, whose members are

everywhere (locally) incident with constant angle:

Let φ(x,y,λ) be a one parameter family of curves. Then, the family of curves which are always

locally inclined by angle γ to curves of φ is given by�
∂φ
∂x

cos γ − ∂φ
∂y

sin γ
�

dx +

�
∂φ
∂x

sin γ +
∂φ
∂y

cos γ
�

dy = 0 .

Particularly, for transversal families γ =π/2 and we obtain

− ∂φ
∂y

dx +
∂φ
∂x

dy = 0 .

Having the structure of last formula in mind, one can easily follow the idea of general

construction presented further.
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Wavefronts

Let h=const be the projection of wavefronts in stationary spacetime (M,g), i.e. let a coordi-

nate eikonal ψ=ωt−ωh fulfil the eikonal equation g(dψ, dψ)=0. Note, that eikonal equation

is insensitive to diffeomorphisms of eikonals. Indeed, when m:R1→R1, for ψ̃=m◦ψ one

obtains g(dψ̃, dψ̃)=m′2g(dψ, dψ).

Let then a codimension one one-parameter family f̄ of (hyper)curves be a candidate for a

wavefront:

f̄ (xa,c̄) = 0 ⇒ h̄(xa) = c̄, (27)

with h̄ not necessarily existing explicitly. Though g(dψ̄, dψ̄)=0 is for ψ̄=ωt−ωh̄ sufficient

condition for h̄ to be a wavefront, it is not the condition necessary: making use of the fact

that diffeomorphisms of eikonals do not affect the eikonal equation we have to also admit a

diffeomorphism c◦h̄ of the wavefronts candidates, yielding for the true coordinate eikonals

ψ=ωt−ω(c◦h̄) an eikonal equation

1

ω2
g(dψ, dψ) = gtt − 2c′gtah̄,a − (c′)2gabh̄,ah̄,b = 0, (28)

where a, b are space indices. The last equation will be fulfilled identically, if

c =

∫

∂f̄

∂c̄

gtaf̄,a ±
√

(

gtaf̄,a
)2

+ gttgabf̄,af̄,b

gabf̄,af̄,b
dc̄ (29)

while h̄,a=−f̄,a/(∂f̄/∂c̄), using implicit derivatives formulas. A candidate (27) is thus a

wavefront if we happen to find last integral, namely if the integrand can be made rid of the

coordinates (using (27) again), while as long as c(c̄) is function of a single variable, it holds

no place for coordinates. In this way, using the freedom of eikonal transformation, we can

precise the diffeomorphism for all candidates, that are indeed wavefronts.

Let us investigate two wavefronts candidates f̄± : sin(3x+5y)+c̄cos(3x±5y)=0 in two

dimensions: plugging into (29) we get

|c| =

∫

∂f̄±/∂c̄
√

(f̄±
x )2 + (f̄±

y )2
dc̄ =

∫

cos(3x± 5y)√
32 + 52[cos(3x + 5y) − c̄ sin(3x ± 5y)]

dc̄

and using the definition of f̄± we finally get

|c| =
1√
24

∫

dc̄

cos(3x + 5y)

cos(3x ± 5y)
+ c̄2







c 6∃ for f−

c=± 1√
24

arctanc̄+const for f+ .
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Indeed h=(3x+5y)/
√

24 is a wavefront for f+, i.e. it satisfies eikonal equation.

Let us now devote our attention to the case of Y -parametrised form of wavefront candidate

f̄a(xa, Y, C̄) = 0 ⇒ Y (a) = ḡa(xa, c̄)

with again, ḡ not necessarily existing explicitly. In last formula, Y (a) means (possibly

hypothetic only) expression of Y from a-th equation, i.e. also Y (a)≡Y (b). Then an implicit

(non-parametric) expression for a wavefront candidate f̄ (xi, c̄)=0 is any of f̄ (Y (a))=f̄ (ḡa(xa,c̄))

where f̄ means just balancing the Y (a)s to vanish. For such a candidate expression to be

directly plugged into (29) we only need to state the partial derivatives:

f̄,a=
∂f̄

∂ḡb
ḡb

,a=
∂f̄

∂ḡb
Y (b)

,a =−
∑

b

f̄ b
,a

∂f̄

∂ḡb

/∂f̄ b

∂Y

∂f̄

∂c̄
=

∂f̄

∂ḡb

∂ḡb

∂c̄
=

∂f̄

∂ḡb

∂Y (b)

∂c̄
=−
∑

b

∂f̄ b

∂c̄

∂f̄

∂ḡb

/∂f̄ b

∂Y

The most simple case is for two dimensions: f̄a(xa, Y, C̄)=0, a=1,2. Choosing obvious

f̄ =Y (1)−Y (2) we have

f̄,1 = −f̄ 1
,1

/∂f̄ 1

∂Y
, f̄,2 = f̄ 2

,2

/∂f̄ 2

∂Y
,

∂f̄

∂c̄
= −∂f̄ 1

∂c̄

/∂f̄ 1

∂Y
+

∂f̄ 2

∂c̄

/∂f̄ 2

∂Y

These expressions can now be directly plugged into explicit case formulas.

Rays

Let f be a function over Riemannean manifold (M,g) of dimension m. Then f (xi)=c is

a solution to equation df =0 and represents itself a codimension one hypersurface. For

g :R→R, g◦f =c̃ is a solution to the same equation ⇔ f =c is a solution, if only g is a

diffeomorphism.

Indeed, in coordinates one has df =f,idxi, dc=0. Furthermore, d(g◦f )=g′f,idxi=g′df .

Note also, that c̃=g(c) for both solutions to be identical.

Let now m=2; then over M there exist functions α, h such, that α∗df =dh. As a consequence,

the gradients of f and h are perpendicular.

Actually, ∗df is an (m−1)-form, with α 6≡0 being its integration factor (if such exists).

For m=2 both df and ∗df are one forms. If we pick coordinates x, y on M , then
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∗df =(1/
√

g)f,ydx−(1/
√

g)f,xdy and, comparing the components, h,x=(α/
√

g)f,y, h,y=

−(α/
√

g)f,x. Excepting h from the last pair of equations by taking the cross derivatives one

obtains

1√
g

(

α,xf,x + α,yf,y
)

+ α

[

(

f,x√
g

)

,x

+

(

f,y√
g

)

,y

]

= 0 (30)

by whose solvability, existence of α in two dimensions is guaranteed.

Also, g(df,dh)=αg(df,∗df )=αεijf,if,j =0.

The construction of f and h is chosen such, that they might serve as ray and wavefront

family candidates, respectively. For this reason, let h be further a solution to space projection

ω2g(dh,dh)=ω2gtt of eikonal equation:

gijh,ih,j = gxxα2f 2
,x + 2α2gxyf,xf,y + gyyα2f 2

,y = gtt

which yields α2=gtt/gijf,if,j . While the integration factor is a multiplicative quantity, we

will without loss of generality use the positive root of previous equation,

α =
√

gtt/gijf,if,j , (31)

moreover for – as will be shown – we are mainly interested in cases when α→0.

One would find (30) not identically fulfilled upon introduction of last expression. Instead,

upon substituting therein for α from (31) a requirement for f to be an momentum eikonal

candidate is acquired:

2gijf,if,j

[

(ln
√

gtt),xf,x+(ln
√

gtt),yf,y+
√

g

(

f,x√
g

)

,x

+
√

g

(

f,y√
g

)

,y

]

−

−
[

(gijf,if,j),xf,x+(gijf,if,j),yf,y

]

=0

(32)

However, α is multiplicative quantity, which can be used to gain a significant mathematical

simplification of the procedure that must be taken: in practise, it is better to find α from (31)

and subsequently checked there is to be (32); if (32) gets broken, the input function f may

be a system of trajectories, but never admissible by eikonal equation, i.e. not rays in physical

meaning as objects in geometrical optics. In this way, the checking of rays candidate has

been reduced to derivating only.

Clearly, if α≡1, f forms itself a coordinate eikonal.

If chosen M≡R2 together with Cartesian coordinates, the equation (32) reduces to f 2
,xf,yy+

f 2
,yf,xx−2f,xf,yf,xy=0 and α2 =1/(f 2

,x+f 2
,y).
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For a one parameter family of candidates f =x2+y2+2axy the calibration (31) is

α = 1
/

(

2

√

(x + ay)2 + (y + ax)2

)

and the condition (32) distinguishing rays from common curves gets

−8(1 − a2)(x2 + y2 − 2axy) = 0 .

Clearly, only systems with a=±1 fulfil last equation identically irrespective of coordinates,

ie. are rays together with all diffeomorphisms of themselves.

As has been shown in the first paragraph of this chapter, even if f is a diffeomorphic

mapping f =g◦φ(xi) of ray system φ, it is still a ray system. As a consequence of (32), any

among such transformed ray systems fulfils its condition, so there is no need to further

distinguish between rays candidate and physical rays .

Plugging f =g◦φ into (32) we indeed obtain

g′3









2gijφ,iφ,j

[

(ln
√

gtt),xφ,x+(ln
√

gtt),yφ,y +
√

g

(

φ,x√
g

)

,x

+
√

g

(

φ,y√
g

)

,y

]

−

−
[

(gijφ,iφ,j ),xφ,x+(gijφ,iφ,j),yφ,y

]









= 0

which is formally identical with (32). Also,

α =
√

gtt
/

(

g′
√

gijφ,iφ,j

)

.

Note, that while the integration factor is multiplicative, the mapping-dependence is of no

particular importance (until we want to know the wavefronts, of course).

Let us now study the case of implicitly given ray equation, i.e. F (xi, c)=0⇒f (xi)=c. Of

course, f is now expected to not be available for some particular reason.

Using now the implicit derivatives calculus, we can write

f,i = −F,i

Fc
,

if considered F =0⇒f =c. When obtaining f,ij and higher derivatives, care must be taken,

because in last equation, the parameter c is generally present, which should be (prior to

further derivating) excluded therefrom using ray equation. We however cannot expect that

we can perform the transit from F to f , so last derivative must be understood as f,i(xi,c(xi)).

With this in mind, we can compute the second derivative as

f,ij = − ∂

∂xi

F,i

Fc
− ∂

∂c

F,i

Fc

∂c

∂xi
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Using the fact that f =c holds we have c,i=f,i in rightmost term of last equation, hence

finally

f,ij = −F,ij

Fc
+

F,i
∂F,j

∂c
+ F,j

∂F,i

∂c
F 2

c
− F,iF,jFcc

F 3
c

.

Note that last expression is symmetric in indices i, j as partial derivative must be. We have

thus obtained the second derivative without need to now c explicitly. Again c is present

in last expression, so to find the third derivative, we would have to take fij (xi,c(xi)) which

yields

f,ijk=−
F,ijk

Fc
+

F,(ij
∂

∂c
F,k)+F,(i

∂

∂c
F,jk)

F 2
c

−

−
FccF,(iF,jk)+2F,(i

∂

∂c
F,j

∂

∂c
F,k)+F,(iF,j

∂2

∂c2
F,k)

F 3
c

+

+
3FccF,(iF,j

∂

∂c
F,k)+F,iF,jF,kFccc

F 4
c

−3
F,iF,jF,k(Fcc)2

F 5
c

,

where parentheses in indices mean symmetrization over cyclic permutation of included

ones. It is important to point out, that all the derivatives in last expressions are partial, i.e.

all the implicit information has been smeared out. The higher order derivatives bring no

new ideas.

The expressions from the implicit case can be just plugged into formulas of the implicit one,

to obtain the desired result.

As for the parametrically given rays candidates, the treatment is formally the same as has

been shown for the parametric case for Wavefronts.
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The Laplaceans of eikonals

Finally, using all the information gathered, we can find the value of (coordinate) Laplacean

∆h≡δdh of the wavefront in m-dimensional space:

δdh=∗d∗dh=∗d∗(α∗df )=∗d(α∗∗df)=(−1)m−1∗d(αdf )=

=(−1)m−1∗(dα∧df )

while rays are always codimension one. In components,

(∆h)a1...am−2 =(−1)p(m−p)εa1...am−2ulαuf,l=

=(−1)(m−1)εa1...am−2ul α3

2gtt
(gkvf,kf,v),uf,l .

Expanding the bracket, we can write

(∆h)a1...am−2 =
(−1)m−1

2gtt
√

gmnf,mf,n
3
εa1...am−2ulf,l(g

kv
,u f,kf,v + 2gkvf,kf,vu) (33)

The importance of formula (33) is that a quantity of a coordinate representation eikonal

was generally obtained using the momentum eikonal only. In other words, we can state

the Laplacean of coordinate eikonal generally, if only we know the rays pertaining this

eikonal. In this way, the need of Legendre transformation has been avoided. Note however,

that the Laplacean contains now the momentum parameter(s), which would have to be

eliminated using the ray equation f (xi)=c, for Laplacean to become a stand alone quantity.

This is the price for avoiding the Legendre transformation. As will be seen later this price is

not too high.

Consider now the case of implicit ray equation F (xi, c)=0. The Laplacean ∆h in this case

reads

(∆h)a1...am−2 =
(−1)m−1εa1...am−2ul

2gtt
√

gmnF,mF,n
3|Fc|

F,l

[

gkv
,u F,kF,vF 2

c −

−2gkvF,k

(

−F,vuF 2
c +

(

F,v
∂Fu

∂c
+F,u

∂Fv

∂c

)

Fc−F,uF,vFcc

)

] (34)

Note that formally the explicit ray equation case is restored, when all parameter

derivatives of F,i and Fcc (and thus all higher terms in both cases) are set zero.

This rule is valid generally, not only within Laplacean. In the flat case, the implicit

case Laplacean (33) reduces to

∗d∗dh =
fxy(f 2

x − f 2
y ) − fxfy(fxx − fyy)
√

f 2
x + f 2

y

3
(35)
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and the explicit case Laplacean (34) to

∆h=
[

FxFy

(

F 2
c (Fyy−Fxx)+2Fc(FxFxc+FyFyc)−Fcc(F 2

y −F 2
x )
)

+

+(F 2
y −F 2

x )
(

−F 2
c Fxy +(FxFyc+FyFxc)Fc−FxFyFcc

)] 1

2
√

F 2
x +F 2

y

3
|Fc|

Let us choose the family F :y−y0 =c(x−x0)of curves, which upon [x0,y0] fixed repre-

sents a bunch of lines through that point. Such a choice represents a ray equation, while

the implicit form of (32) is fulfilled identically. Also,

α = (x − x0)
/

√

(x − x0)2 + (y − y0)2

The Laplacean now gets ∆h=−1
/

√

(x−x0)2+(y−y0)2.

For the rays of momentum eikonal (apart turning points) we know to have

f : ϕ − ϕ0 −
Z r

r0

Ψ

y
p

ω2y2 − Ψ2
dy = 0

for which the (32) is of course fulfilled. Then α=
√

ω2r2−Ψ2
/

ω and finally

∆h =
1

√

ω2r2
0 − Ψ2 −

√

ω2r2 − Ψ2
∧ Ψ =

ωrr0 sin(ϕ − ϕ0)
√

r2 + r2
0 − 2rr0 cos(ϕ − ϕ0)

while the ray equation is invertible in Ψ. Together,

∆h =

√

r2 + r2
0 − 2rr0 cos(ϕ − ϕ0)

r0|r0 − r cos(ϕ − ϕ0)| − r|r − r0 cos(ϕ − ϕ0)|
The last expression deserves a piece of commentary: the combination of expressions within

absolute brackets is such, that their signs vary from point to point, but always remain

opposite from one bracket to the other. This allows us to finally write

∆h = −1
/

√

r2 + r2
0 − 2rr0 cos(ϕ − ϕ0) .

It is another clue, that the two hereby examined examples are geometrically identical. Both

the Laplaceans stated are in correspondence with the direct computation in example at the

end of Eikonals as complete integrals.

Even more important information carries the Laplacean (34) in the implicit case. It states,

that (under certain regularity conditions) the implicit case Laplacean of coordinate eikonal

diverges at and only at the caustic itself. In this way, from focusing point of view, the

momentum (caustic) and coordinate (Laplacean) treatments are equivalent and any available

of them can be in particular application used.

Indeed, recall the equation (14) of caustic |κjk|≡|∂πj/∂ck|=0. In two dimensional case,

the ray equations πj =0 reduce to single equation F =0, and hence the caustic gets κ:Fc=0.
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Looking at equation (34), the presence of term |Fc| in the denominator assures the statement

of previous paragraph.

Note, that actually, the caustic itself is a parameter-Laplacean of momentum eikonal.
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The Optical Scalars

The actual role of optical scalars is two-fold: first, if the vector field ξ defining a (geodesic)

congruence is known in some region of spacetime, the optical scalars are known there as well

(by direct computation), which gives us the possibility to qualify the vector field behaviour

(focusing etc. ). Second, if the vector field ξ is specified but in a form of boundary values, we

can from the affine properties of the background spacetime using optical scalars re-construct

the global properties of all admissible vector fields, or sometimes, the fields themselves.

The usual point to start with optical scalars is the acceleration vector, giving at last the

optical scalars as quantities within its kinematical decomposition. Namely the (effectively

three-dimensional) expansion tensor θab and vorticity tensor ωab are introduced. Taking the

decomposition to traceless part and the trace, the usual Sachs scalars may be introduced:

θ =
1

2
lk;k ω2 =

1

2
l[k;m]l

k;m θ2 + |σ|2 =
1

2
l(k;m)l

k;m . (36)

Technically, these four scalars can be combined into two complex valued ones with nice

geometrical interpretation. Using Ricci identity, the relation of these quantities to Riemann

tensor is established. Hence these quantities lie in roots of the spacetime structure. Also the

general evolution equations for these scalars may be generally obtained – the Raychaudhuri

equation with its consequences.

Let us now adopt quite different approach, based on purely mathematical ideas. We have the

task to describe the behaviour of geodesic congruences tangent vector fields lk in terms of

scalars. To cover the information on local behaviour of such fields, we need to admit the first

derivatives lk;j in these scalars. Let us now build a scheme of such scalars, sequently adding

the number of vector field components involved within groups with particular number of

first derivatives present:

The lowest number of derivatives is zero and there are only scalars of type

lklk, (lklk)2, . . .

where dots mean higher powers of lklk . As can be seen, all the information within these

zero order is contained in single term lklk .

There are two types of scalars containing a single first derivative:

lk;k, . . . lk;jlklj, . . .

As can be seen, any information other then already known is in a term lk;k, while the second

one is identically zero for geodesics.
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The situation slightly complicates for two first derivatives present, we now have

lk;klj;j ...

lk;mlk;m, lk;mlm;k ...

lk;mlj;mljlk, lk;mlj;kljlm, lm;klm;jl
jlk, ...

lk;mlu;vlklmlulv, ...

(with the summary power of lk rising with each line). There is no new information on the

first line, and the last one trivialises for geodesics. The second line brings both two terms

new. The third one is trivial in the last two terms due to geodesicity again, however the first

term here trivialises itself for scalar congruences lk =ψ,k too, as then lk;j =lj;k. However,

when scalar congruences are treated, from the same reason only one term of the second line

is independent.

As for three first derivatives, we can write

lk;kl
j
;jl

m
;m, lk;jl

j
;mlm;k , ...

lk;klm;jlm;j, lk;klj;mlm;j, ...

lk;kl
j
;jl

j;mlj;ulmlu, many permutations...

...

The number of terms is now high, however, whole blocks are dependent only: e.g. starting

on line three there is a part that could be written as lk;k·(terms with two first derivatives) etc.

Also, note that from this order on, the Ricci identity comes into play. Even more interestingly,

when the scalar congruences are considered, there are no new terms at all from here on.

Summarising, if all the scalar terms that carry independent non-trivial information are typed

bold, then all of the bold terms for scalar isotropic geodesic congruences are listed in the

scheme

none: lklk, ...

one: lk
;k

, lk;jlklj, ...

two: lk;klj;j, lk;mlk;m, lk;mlm;k, ...

lk;mlj;mljlk, lk;mlj;kljlm, ...

lk;mlu;vlklmlulv, ...

...

It is seen, that the usual Sachs scalars (36) for our case are constructed namely from the

above basis in the way, they had the well-known physical meaning of expansion, rotation
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(which vanishes for light), twist and shear, that rule the infinitesimal beam cross-section (and

its evolution). Let us study now the optical scalars for light congruences. From caustical

viewpoint, the distortion makes no contribution, the rotation is identically zero for gradient

cases lk=ψ,k , as is our case. Thus, only expansion remains, given as

θ =
1

2
lα

;α .

Its double has the physical meaning of relative change to cross-section A of an infinitesimal

beam with respect to affine parameter σ change, i.e.

lα
;α =

dA

A dσ
,

or, solving last equation
∫

lα
;α dσ = C ln A .

which gives an answer to where the caustic is to appear: it is everywhere, where the beam

cross-section vanishes, i.e. everywhere, where the integral with respect to affine parameter

of Laplacean shows negative divergence.

Let us now consider the solution ψ of eikonal equation. As was shown in (3), thanks to

the scalarity the rays are geodesics. In static cases, the projection of eikonal equation reads

gαβψ,αψ,β=gttψ2
,t . The left-hand side of the equation is then an eikonal equation in space,

for in this case the space metric is just the minor of spacetime metric. The right-hand side

has the meaning of a wave vector norm (with time independence assured). It is thus seen,

that the space projections of rays will be themselves the space (non-isotropic) geodesics

⇔gtt=const, for conservation of norm is a property of parallel transport (and ψ,t=const).

When searching for the affine parameter of the rays we thus have to stick to spacetime

eikonal equation. Then, however, while the rays are isotropic geodesics, the arc will not be

an affine parameter. Yet, while we know, the rays are geodesics, we expect that from the

geodesic expression in general parameterisation v

d2xi

dv2
+ Γi

jk
dxj

dv

dxk

dv
+

dxi

dv

d2v

dσ2

/( dv

dσ

)2
= 0 (37)

we will succeed to find the affine parameter σ. The equations above indeed reduce into one,

if a condition

d2x[i

dv2

dxl]

dv
+

dxj

dv

dxk

dv
Γ[i

jk( dx
l]
/ dv) = 0

(which removes from the geodesic equation (37) the parameterisation dependence) holds

[Kuch]. If it does, we can pick for finding the affine parameter any of geodesic equation (37)

components.
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To utilise these formulas, we will in further expect the knowledge of eikonal with multi-

plicative constant in two dimensions, ψ=ωt−ωχ(xi,ρ). Its ray equations are given by

∂/∂ω : t−t0 =χ ∂/∂ρ : χρ=const

As an trial parameter we always pick one of coordinates. For the general treatment, of

course, we then choose the component of (37) that is the parameter coordinate one, for its

simplicity (the second derivatives vanish). Then,

Γv
jk

dxj

dv

dxk

dv
v 2

σ + vσσ = 0 .

Taking now the implicit derivatives formulas, we can write vσ=1/σv , vσσ=−σvv/σ3
v ,

whence

Γv
jk

dxj

dv

dxk

dv
σv − σvv = 0,

which finally gives

σv = exp

∫

(

Γv
jk

dxj

dv

dxk

dv

)

dv .

There is no need to proceed further this general calculation: upon integration of Laplacean

with respect to affine parameter we need not know the parameter itself, for dσ=σv dv holds.

The result stated above is the only thing needed.

It is however interesting, what is to be done with the ray parameter ̺ during the last

calculation. As affine parameter is to be a function of trial parameterisation only, and we

picked one of coordinates for it, the other one has to be extincted using ray equation, and

the ray parameter is to be integrated as a constant this time.

When starting from ray equations, in Cartesian coordinates of the flat case the equations

of geodesics both for plane and spherical waves reduce thanks to vanishing of Christoffel

symbols to the fact, that the coordinates themselves are the affine parameters. Things

change, when polar coordinates are adopted: let us start from momentum eikonal

ψ = ωt − Ψϕ −
∫

√

ω2 − Ψ2

r2
dr

which brings ray equations

t − t0 =

∫

r dr
√

r2 − ρ2
ϕ − ϕ0 =

∫

ρ dr

r
√

r2 − ρ2
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after transit to multiplicative constant. As a natural parameterisation of the geodesic we

choose the radial coordinate. As expected, carried out, all geodesic equations reduce into

single equation

r(r2 − ρ2)rσσ − ρ2r2
σ = 0 .

Its solution is simple:

σr = exp

(

−
∫

ρ2 dr

r(r2 − ρ2)

)

=
r

√

r2 − ρ2

whence finally

σ =

√

r2 − ρ2 −
√

r2
0 − ρ2 =

r|r − r0 cos(ϕ − ϕ0)| − r0|r0 − r cos(ϕ − ϕ0)|
√

r2 + r2
0 − 2rr0 cos(ϕ − ϕ0)

after substituting for ̺ from ray equation. Note that actually the affine parameter is the

distance from the source of radiation. This is not a surprise, while in the flat case, the

projections of geodesics are geodesics, whose affine parameter is of course the arc-length.

In connection with this, when in Cartesian coordinates turned the coordinates themselves

the affine parameters, then, when choosing a point source, i.e. the rays y−y0 =k(x−x0),

let us choose as the parameter e.g. (x−x0). Then, however, a distance from source is also

an affine parameter, while n
√

(x−x0)n+(y−y0)n=(x−x0) n
√

1+kn, after substitution

from ray equation.

42



Electromagnetic Waves in a Gravitational Field

The Curvature Landscape

It is a thoroughly accepted fact, that in the flat (three-dimensional) space the general wave-

front exhibits two caustic surfaces: one for each principal curvature of points of itself [Ber].

Much more interesting is that the family wavefronts ruled by eikonal equation (3) have the

property, that all of its members exhibit the identical curvature surfaces, i.e. the curvature

surfaces are invariants of wavefront evolution. We show in this chapter, how such behaviour

comes into being.

In statements of previous paragraph, there is a connection between curvature and intensity

divergence (in rank of geometric optics) contained. In the forthcoming chapter we show

how this comes into being and moreover, find the exact connection.

Let us then deal with case M≡R2 for a while and state therein the expression for a (first,

geodesic) curvature

Κ = (ẋÿ − ẏẍ)/

√

ẋ2 + ẏ2
3

(38)

for a curve (x(τ),y(τ)). Such parameterisation is not suitable for our purposes, having in

mind the wavefronts equation h(x,y)=c, it is more convenient to parameterise as (x,y(x)).

Then,

Κ = y′′/
√

1 + y′2
3

.

Having the implicit wavefront, we can state by direct computation, that

Κ = −
(h2

yhxx − 2hxhyhxy + h2
xhyy)

√

h2
x + h2

y

3
. (39)

The last expression, however, is the Laplacean (35). To see it plain, let us plug in the

appropriate ray equation f (x,y)=c (taking the explicit one makes no loss of generality), i.e.

the connection (hx,hy)=(αfy,−αfx) with α=1/
√

f 2
x +f 2

y . This yields

Κ =
fxy(f 2

x − f 2
y ) − fxfy(fxx − fyy)
√

f 2
x + f 2

y

3

which coincides with (35). We can thus conclude, that (in two flat dimensions) the Laplacean

of coordinate eikonal identifies itself with the wavefronts curvature.

Now we have in hand all the material to study the relationship of the wavefronts and caustic

(at least in the flat case). First of all, we know the caustic to appear in the places of coordinate
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eikonal Laplacean divergence. So we can move along a ray and watch the value of Laplacean:

as we have seen recently, it in the same time acquires the reciprocal value of wavefront radius

of curvature at intersection with ray followed. By these two points the change of Laplacean

value is tightened such, that we know in every point, that the caustic will appear on the

ray followed just the curvature radius farther along this ray (in appropriate direction along

the ray, of course). These two points also guarantee, that all wavefronts have the common

caustic. The word ’farther’ in one but last sentence is used very justly, because, as we have

seen, that the affine parameter is just the arc length.

Summing up, while the rays are in the flat case straight lines in our case, to whom the caustic

points are always from the local wavefront farthered by the curvature radius along these

rays, we can state that enhanced to whole wavefront, the caustic appears as a geometrical

location of wavefront curvature centres, which is the definition of (wavefront) evolute.

The expression for evolute e=(ex(τ), ey(τ)) of a curve (X(τ),Y (τ)) we however do know:

e =

(

X − (Ẋ2 + Ẏ 2)Ẏ

ẊŸ − ẌẎ
, Y +

(Ẋ2 + Ẏ 2)Ẋ

ẊŸ − ẌẎ

)

,

which reparameterised to y(x) gives

e =

(

X − y′ 1 + y′2

y′′ , Y +
1 + y′2

y′′

)

.

Taking again the wavefronts h(x,y)=c we obtain

e =

(

X −
h2

x + h2
y

h2
yhxx − 2hxhyhxy + h2

xhyy
hx, Y −

h2
x + h2

y

h2
yhxx − 2hxhyhxy + h2

xhyy
hy

)

,

which can be re-written using (39) as

e =



X +
1

Κ
hx

√

h2
x + h2

y

, Y +
1

Κ
hy

√

h2
x + h2

y



 .

Plugging again (hx,hy)=(αfy,−αfx) we finally obtain

e =
(

X + αfy/Κ, Y − αfx/Κ
)

.

Here the computations are exhausted, because the final relationship (between wavefronts

and caustic) was found. However, we insist to not know the components X,Y defining the

wavefront, when the ray equation is known for our calculation to be of a value; the only

thing we know, is that X, Y obey the equation of wavefront, i.e. h(X, Y )=c, whence, for the

relationship discussed, finally

h(x − αfy/κ, y + αfx/κ, c) = 0 ∧ f = 0 .
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Note that in the last expression for evolute (caustic) the second equation serves to extinct the

ray parameter. In this way, caustic (unlike one-parameter families of rays and wavefronts)

indeed turns non-parametric in the two-dimensional case, i.e. there is a single curve to

describe the optical situation all properties.

While we insist to not know the explicit form of wavefronts, we will not even tray to extend

this last calculation in the curved case, instead, we adopt in Part Two of this work another

approach, that will provide us with further results.

For the purpose of completeness, let us at this end state the calculation of the curve involute

– we would make us of it, whenever we know explicitly the caustic and will seek for the

wavefronts:

ν :
(

X − sẊ
/

√

Ẋ2 + Ẏ 2 , Y − sẎ
/

√

Ẋ2 + Ẏ 2
)

, (40)

where s=
∫

√
Ẋ2+Ẏ 2dt. Namely from this (indefinite) integral emerges the constant, that

is to be a wavefronts family parameter.

45



Electromagnetic Waves in a Gravitational Field

Exercise & Applications

This part of the work contains a simple exercise and several applications of the treatment

from the main two parts of this work.

Axial beam reflection on a spherical mirror. This exercise is mostly a demonstration of

majority of derivations performed within this work. Aimed was an application on some flat

configuration, that is however a bit more sophisticated then the plane and spherical waves,

that are used for their immediate illustrativity of the problematic during the calculations.

Thus, here, the case of beam whose rays come (without loss of generality) parallel with

symmetry axis is shown collected on a single place. For this reason, the maximum of

references to points, where each appropriate problem is discussed, is given.

The higher-dimensional optics. Though the calculations of the first part of this work were

done mainly in two dimensions, it is shown in this short application, that their validity is

not restricted by this number of dimensions. Note, that an even more generalising insight

of two dimensional optics region of validity is discussed in the last part of the work.

The Maxwell’s fish-eye and gravitational lensing. There are only few physical realisations

of an ideal optical instrument – apart from the flat mirror, the Maxwell’s fish-eye is one.

In this application a gravitational lensing configuration is found, which in particular limit

reproduces this ideal optical instrument.

The focus of a cluster and its aberrations. Here the optical constructions built are fully

applied to gravitational lensing problem: a bending of point source light by intervening

matter of foreground cluster of galaxies possible realisation. The value of cluster focal

length is given with its aberrational structure. Physical discussion is present.

The light within FLRW models. In this last application, the formulas are tested on a metric,

that is very different from ones, used during the main calculations to prove the versatility of

the methods suggested.
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Axial Beam Reflection on a Spherical Mirror

Let us (without loss of generality) consider a section of unit mirror X2 +Y 2=1, that is

located at origin of Cartesian coordinates within the flat spacetime, as can be seen in Fig. 1.

We choose the rays from distant source and, allowed by the symmetry of the problem, we

let the beams impact along the optical axis (chosen as horizontal).

φ

R

α
α

2φ

Fig. 1. The situation at the symmetry section of spherical mirror. One

ray from the incident beam (approaching from right) is shown together

with this ray reflection. The point of reflection is [−
√

1−Y 2, Y ].

As rays in Minkowski spacetime are formed by lines, they can be generally written as

y=pY x+qY , with a ray point on the mirror coordinate Y chosen as a (unique) ray parameter,

for the family of y-axis parallel rays. For the single-time reflected rays this (using the mirror

equation) brings

y − Y = k(x +
p

1 − Y 2) .

It only remains to find the directive of the reflected ray. Noticing that the reflection normal

line is in any point of the mirror a radial one, we can from the Snell’s law write

k = tan−2φ = − tan 2 arctan
Y

√

1 − Y 2
= −2Y

√

1 − Y 2

1 − 2Y 2
(41)

and the sought for ray equation is finally

π : (1 − 2Y 2)(y − Y ) = −2Y
p

1 − Y 2(x +
p

1 − Y 2), (42)

here adjusted to allow also for the reflected rays without directive, profiting now the fact,

that we can work with implicit systems, as developed in chapter Rays. From all possible

non-singular (linear) parameterisations we choose

Xπ=(1−2Y 2)τ−
√

1−Y 2

Yπ=−2Y
√

1−Y 2τ+Y
(43)
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which is most quickly seen from the ray derivative (41) and a (natural) choice, that the

parameter-origin was a mirror reflection point on a ray.

The caustic, as a singularity of enhanced ray surface appropriate to (42) projection onto the

configuration space ∂π/∂Y =0 emerges as

κ : (1 − 2Y 2)2 = 4Y 4 − 2Y 2 +
2x

√

1 − Y 2
+ 2 (44)

The equations (42) and (44) settle the parametric form of caustic

Xκ =−(1/2+Y 2)
√

1−Y 2

Yκ =Y 3 .
(45)

Note how the role of ray family parameter Y changed to parameterisation of caustic, see (14)

and further. The caustic itself is from (45) seen to be of the semi-cubic (Neil) parabola type,

i.e. a symmetric curve possessing a cusp singularity, see Fig. 2. The caustic cusp, as point

lying on the optical axis is thus defined as Y =0 within (45), which gives x|Y =0=−1/2, which

is in agreement with the well-known relation f =R/2 for the focal length of a spherical

mirror with radius R.

–1

–0.5

0

0.5

1

–1 –0.8 –0.6 –0.4 –0.2

Fig. 2. The caustic (45) of rays single-time reflected on

a spherical mirror symmetry section. Note the position

of the cusp.

The wavefronts cannot be found from the ray equation (42), unless we stated the appropriate

momentum eikonal, moreover, due to algebraic problems, analytically at best with problems.
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On the other hand, we have shown for the flat case, that the wavefronts are formed by the

involute (40) of caustic; in our case

Xw=−2(1−Y 2)
√

1−Y 2+C(1−2Y 2)

Yw=−2Y 3+3Y −2Y C
√

1−Y 2
(46)

with the constant C – coming from the indefinite integral within involute expression –

numerating the wavefronts; e.g. C=1 is the one, that touches the mirror horizontal pole.Note,

that it is however not obvious, that C was the optical length (i.e. the affine parameter) itself.

Having a wavefronts parameterisation (46), we can easily find their curvature (38) as

κ = (ẊwŸw − ẎwẌw)
/

√

Ẋ2
w + Ẏ 2

w

3

.

The actual result for our exercise is quite complicated, however, stating the values of curva-

ture along the axial ray is illustrative:

κ|Y =0 = −2/|2C − 3| . (47)

According to last formula, at the axis, the wavefronts curvature diverges at C=3/2, which

occurs (from the wavefront equation (46)) at x=−1/2. Owing to symmetry, this point is the

cusp of the caustic present and also, it is the value of position of focus of the mirror used

(see Fig. 2.). Such result is in correspondence with (45).

Let us draw our attention back to wavefronts. Having now their parametric form (46), the

previous suspicion that obtaining their explicit form h(x, y)=c would be difficult is con-

firmed, for although eliminating the parameter Y is a matter of solving algebraic equations

of third and second order (most easily for
√

1−Y 2 from the first equation, using a trick

1−2Y 2=2(1−Y 2)−1), the trial for wavefront explicit formulas by eliminating the parame-

ter C must be considered problematic at best right from the beginning.

In strict contrast to complications of the last paragraph, there stands the easiness of obtaining

the depiction of wavefronts by aberration expansion, using the general wavefront expansion

(81) in the flat spacetime with Cartesian coordinates

h = (x + c0) +
1

2x + c2
y2 +

−2x + c4

(2x + c2)4
y4 . . . . (48)

To comply with the last expansion, we must first of all check, whether the formulas in use are

just candidates, or more, while they came ad hoc in the beginning. Within the R2 considered

we according to (28) obtain

0 = c̄′2
(

∂x

∂c̄

/ ∂x

∂Y
− ∂y

∂c̄

/ ∂y

∂Y

)2

− 1

(∂x
/

∂Y )2
− 1

(∂y
/

∂Y )2
.
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After substituting, we get c′=1, which means, that the candidate constitutes directly the

wavefronts. Hence, their parameter C is affine, i.e. the arc in the flat case, and as late as

now the statement avoided above, that C measures the optical length becomes just. We

can thus directly substitute the wavefront parameterisation (46) into general expansion (48),

obtaining

(

−2(1−Y 2)
3/2 +C(1−2Y 2)+c0

)

+

(

(−2Y 3+3Y −2Y C
√

1−Y 2)2

−4(1−Y 2)
3/2 +2C(1−2Y 2)+c2

)

+

+

(

4(1−Y 2)
3/2−2C(1−2Y 2)+c4

(−4(1−Y 2)
3/2 +2C(1−2Y 2)+c2)4

(−2Y 3+3Y −2Y C
√

1−Y 2)4

)

+...=C .

Re-expanding in powers of Y , we get

(−2+c0)+
(

3−2C+
(3−2C)2

−4+c2+2C

)

Y 2+

+
(

−3/4+
2(3−2C)(C−2)

−4+c2+2C
− 2(3−2C)3

(−4+c2+2C)2
+

(4+c4−2C)(3−2C)4

(−4+c2+2C)4

)

Y 4+...=0 .

Note, in what manner this calculation is meaningful: every next term contributes to one

order higher term than the one before, and we can thus recursively get

c0 = 2, c2 = 1, c4 = −5

4
, . . .

Also note, that the constant C numerating the wavefronts, does not appear in the expansion

coefficients, it only appears in the wave progress difference (86).

To conclude these calculations, we shall once more show the location of the Gaussian focus,

using now the aberrations treatment. For two general axial wavefronts, we can (in a fixed

point) always match their progress by a suitable choice of phase differences (equalising the

lowest order constants in their expansions), see (87). The aberration coefficients (84) for a

point source located at (x0, 0) in the flat case read

c0 = −x0 c2 = −2x0 c4 = 2x0 . . . .

Recalling to the wave progress difference expansion (87), note that we are completely free to

choose the position of the reference source, for the absolute term is always possible to match

by phase constant(s) as δ=c−c̃ from (86). Hence, we for the source position obtain

x0 = −1/2 .

This restores the Gaussian focus from (47) as a place, from which apparently emerge the

spherical waves of focused wavefront (see Fig. 3.).
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–1

–0.5

0

0.5

1

–1.4 –1.2 –1 –0.8 –0.6 –0.4 –0.2
Fig. 3. Several wavefronts of reflected

rays. Note the way they are closing to the

focus point. The parts of the wavefronts

that are outside the mirror are unphysi-

cal – those belong to the rays, that would

actually survey the second (and possi-

bly even higher number of) reflections,

which is however not implemented in the

formulas hereby used.

Also, (empirical) eikonal along ray gets

ψY =
√

1 − Y 2 +

√

(Y − y)2 + (−
√

1 − Y 2 − x)2,

whence using the ray equation (42) we obtain

τ = ψY −
√

1 − Y 2 .

and the wavefront (46) can be re-parameterised using this physical phase as

Xw=(1−2Y 2)(ψY −
√

1−Y 2)−
√

1−Y 2

Yw=−2Y
√

1−Y 2(ψY −
√

1−Y 2)+Y .
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The Higher-Dimensional Optics

In this chapter we will study the higher-dimensional spacetimes possessing the maximal

spherical symmetry. The basic equations will be provided; particularly, it will be shown

that in all these spacetimes the equatorial section brings formally same results as in the

commonly dimensional case, justifying the course taken in the rest of this work.

For the purpose of this application, we shall disregard the possibility of arbitrariness of

ray coordinate differences direction (as found in (18) etc. ) and we also consider only the

situation before turning points as they would bring no qualitative difference.

Recall the static (d−2)-dimensional spherically symmetric metric element (6)

ds2 = gt(r) dt2 − gr dr2 − r2( dΩd−2)2,

where

( dΩd−2)2 = ( dϕd−)2 + sin2 ϕd−
[

( dϕd−)2 + sin2 ϕd−[( dϕd−)2 + . . .
]

]

.

The eikonal equation ψ,iψ,i=0 is separable and the complete (impulse) integral reads

ψ − ψ0 = ωt −
∫ √

ω2 gr

gt
− Ψ2

d−2

gr

r2
dr −

d−2
∑

n=1

∫

√

Ψ2
n −

Ψ2
n−1

sin2 ϕn
dϕn (49)

if set Ψ0=0. The integrals

In ≡
∫

√

Ψ2
n −

Ψ2
n−1

sin2 ϕn
dϕn

are elementary, namely

In = −1

2
Ψn−1arctan





2 cos ϕnΨn−1

√

Ψ2
n sin2 ϕn − Ψ2

n−1

Ψ2
n−1 cos2 ϕn + Ψ2

n−1 − Ψ2
n sin2 ϕn



− Ψnarctan





Ψn cos ϕn

√

Ψ2
n sin2 ϕn − Ψ2

n−1



 .

Note that I1=Ψ1ϕ. The (canonical) ray equation is given by a system

∂

∂Ψd−2
: 0=

Z Ψd−2
√

gr

r2

s
ω2

gt
−

Ψ2
d−2

r2

dr−
Z Ψd−2vuutΨ2

d−2
−

Ψ2
d−3

sin2ϕd−

dϕd− (50)

∂

∂Ψn
: 0=

Z Ψn

sin2 ϕn+

s
Ψ2

n+1
−

Ψ2
n

sin2 ϕn+

dϕn+−
Z ΨnvuutΨ2

n−
Ψ2

n−1

sin2 ϕn

dϕn, n<d−2 .
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Particularly,

∂

∂Ψ1
: 0=

Z Ψ1

sin2ϕ

s
Ψ2

2
−

Ψ2
1

sin2ϕ

dϕ−ϕ .

Note that
∫

Ψn
√

Ψ2
n−

Ψ2
n−1

sin2ϕn

dϕn=−arctan
Ψncosϕn

√

Ψ2
nsin2ϕn−Ψ2

n−1

, and

∫

Ψn

sin2ϕn+

√

Ψ2
n+1−

Ψ2
n

sin2ϕn+

dϕn+=−1

2
arctan





2cosϕn+Ψn

√

Ψ2
n+1sin2ϕn+−Ψ2

n

Ψ2
ncos2ϕn++Ψ2

n−Ψ2
n+1sin2ϕn+



 .

While the last member in fact equals the last term in eikonal, it can be plugged therein with

vanishing of ϕ therefrom; yielding for all the integrals involving ϕ in the eikonal (49)

∫ Ψ2
2

√

Ψ2 −
Ψ2

1

sin2 ϕ

dϕ .

Again, this integral can be (almost) substituted from the equation from ∂/∂Ψ3 and so on.

After repeating this procedure d−3 times in all we finally get

ψΨ = ωt −
∫ √

gr

gt

ω2

√

ω2

gt
−

Ψ2
d−2

r2

dr

(actually irrespective of dimension). The particular eikonal along ray (with time neglected)

ψΨ − ψ0 = −
r
∫

rs

√
gr(y)

gt(y)

ω2

√

ω2

gt(y)
−

Ψ2
d−2

y2

dy

may serve as determination of r(Ψd−2); the construction is as follows: let ψΨ−ψ0 be the wave

distance from a source – a constant Φ. Then we may write

f : 0 = Φ +

rZ
rs

p
gr(y)

gt(y)

ω2vuut ω2

gt(y)
−

Ψ2
d−2

y2

dy .
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The axial expansion

r(Ψd−2) ≈ r|Ψd−2=0 +
∂r

∂Ψd−2

∣

∣

∣

∣

Ψd−2=0

Ψd−2 +
1

2

∂2r

∂Ψ2
d−2

∣

∣

∣

∣

∣

Ψd−2=0

Ψd−2
2 + . . .

can be constructed from implicit derivatives. Indeed, while there are no singularities in the

borders, with notation r0≡r|Ψd−2=0 we can write

r0 : 0=f |Ψd−2=0 =Φ+

r0Z
rs

r
gr

gt
ωdy

∂r

∂Ψd−2

∣

∣

∣

∣

Ψd−2=0
=−

f ′
Ψd−2

f ′
r

∣

∣

∣

∣

∣

Ψd−2=0

=−

r
∫

rs

√
gr

gt

ωΨd−2

y2

√

ω2

gt
−

Ψ2
d−2

y2

dy

√
gr(r)

gt(r)

ω2
√

ω2

gt(r)
−

Ψ2
d−2

r2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ψd−2=0

=0

∂2r

∂Ψd−2
2

∣

∣

∣

∣

∣

Ψd−2=0

=− 1

ω2

√

gt(r0)

gr(r0)

r0
∫

rs

√
grgt

y2
dy

...

if all limits used exist (primes mean differentiation according to subscript-stated quantity).

In this way we have

r(Ψd−2) ≈ r0 −
1

ω2

√

gt(r0)

gr(r0)

r0
∫

rs

√
grgt

y2
dy Ψd−2

2 + . . .

This expansion can be used in the topmost ray-equation component to obtain ϕd− (Ψd−2,Ψd−3).

Similarly, all other quantities, that are used in this work can be in the case of hereby consid-

ered configuration obtained, showing the more general validity of two-dimensional treat-

ment.

54



Electromagnetic Waves in a Gravitational Field

The Maxwell’s Fish-Eye and Gravitational Lensing

This chapter deals with primary optical quantities within the framework of general relativity;

namely, the spectacularity of ideal optical instrument in Maxwell’s sense is put forward. It

is shown that a new realisation of such a fundamental instrument can be achieved within

general relativity by matter of suitable properties particular distribution choice, thus creating

an interesting light deflector on – possibly – large extents; (some) consequences are discussed.

The grounds for relativistic optics are given by testing electromagnetic field presumption (i.e.

field thanks to whose weakness the disturbance of the underlying spacetime is neglibigle)

and its geometrical optics approximation in covariant form.

The fish-eye – an ideal optical instrument

By definition, an ideal optical instrument images stigmatically (point-to-point) a three-dimen-

sional domain. As a classical example, consider equatorial (plane) section of spherical

symmetry adopted with polar coordinates as usual. Denoting n intrinsic index of refraction,

the ray equation

ϕ − ϕs =

rZ
rs

̺dy

y

q
y2n2(y) − ̺2

(51)

has come from particular eikonal for a point source [rs,ϕs], where no turning points are

considered; distinguishing the rays, parameter ̺ forms together with ϕ the ray coordinates.

Inspecting the square root from (51) in domain possessing (spherically symmetric) refractive

index n=nm, where

nm ≡ n0

1 + (r/a)2
(52)

with n0, a being constant, one can easily conclude, that each ray is radially bound to region

between the (square) roots found in which there lay turning points; the two roots (dependent

of ̺), however, need not lie in the same half-plane. Indeed, integration of (51) subject to (52)

yields the rays

̺(r2−a2)=
ar

ars

h
̺(rs

2−a2)cos(ϕ−ϕs)+

+
q

a4rs2n2
0
−̺2(rs2 +a2)2 sin(ϕ−ϕs)

i
,

(53)

which is the equation of circles in polar coordinates that enclose the origin r=0 except case

̺=0, when it describes a straight line passing through origin and source, see Fig. 1.
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It can be noticed, that whenever sin(ϕ−ϕs) turns zero, (53) is fulfilled irrespective of ray

parameter ̺, i.e. all rays pass through the same and thus focal point. Hence, while the sine

turns zero every kπ, to every point source of light there exist an adjoint focus point rf which

lies in opposite direction off the origin and the separation of these two foci as deduced from

(53) is such that

rsrf = a2 .

In this way, the smallest region occupied by ’fully working’ fish-eye is thus a domain r≤a

when the separation of the foci is minimal on the opposite poles of its border. A particular

case of (52), being a ball of radius R with central index n0=2 and extent such that on the

border sphere index of refraction is continuous towards air (vacuum), i.e. a=R is often

called the Maxwell’s fish-eye; for historical treatment, see [Bor].

Fig. 1. Several rays trajectories for a

fish-eye according to (53). Smallest is

the circle r=a.
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Effective index of refraction within general relativity

In scope of previous paragraphs we will study only static spherically symmetric spacetimes;

although variety of these solutions is described generally by two undetermined coefficients

gtt,grr in their metric which thus also govern the curvature of the spacetime, we confine

ourselves in further to familiar case of 3+1 dimensional spacetime. The Fermat principle in

such a configuration reads

δ
∫

dl√
gtt

= 0,

which also shows, that in gravitational field considered the rays will never be shortest curves

in space unless constant gtt [Lan].

Compared with classical version of the principle, we could conclude that for effective index

of refraction there stands

neff = 1/
√

gtt . (54)

Namely this approximation was used to construct the flowing media analogs [LePi] to

relativistic light bending.

It is however not true that the rays would follow the same paths in the flat spacetime with

intrinsic index of refraction of same form, because the exact ray equation in our (curved)

case reads

ϕ =

Z
̺
p

1 − 2m(r)/r

r
q

r2/gtt − ̺2
dr . (55)

where m(y) stands for mass enclosed within r≤ y. Upon comparison with (51) it is seen

that there is an extra relativistic factor in the numerator of (55) which can generally not be

retracted to the suitable position under the square root.

This disproportion actually shows that the index of refraction is post-classically unsuitable

quantity to describe optics. Yet, we can say that the effective index of refraction (54) is true

for week fields, where the relativistic factor gets approximated by one.

Let us for now keep the presumption of week fields, i.e. that the square root of metric

coefficient coincides with the reciprocal value of effective index of refraction, and study two

well-known static solutions in this limit. Such an approximation is appropriate, for it is

expectable, that optically transparent media should be gravitationally weak.

For the exterior solution (of static black hole) with mass M and charge Q, we from (8) get

n =
1

√

1 − 2M/r + Q2/r2
,
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which unfortunately gives no acceptable approximation due to its nature.

The situation is far more optimistic for the case of interior solution realised by an orb or

radius r0 (as measured in critical radii of itself) constituted from perfect fluid; then, from (7)

we have

n =
1

3

2

√

1 − 1

r0
− 1

2

√

1 − r2

r3
0

,

even irrespective of (spatial) dimension. In the weak field as well as in near origin limits,

n ≈ 1
(

3

2

√

1 − 1

r0
− 1

2

)

+
r2

4r3
0

,

driving such an object to behave like a fish-eye with parameters

n0=1
/

(

3

2

√

1− 1

r0
− 1

2

)

a2=4r3
0

(

3

2

√

1− 1

r0
− 1

2

)

.

According to previous we seek only configurations with r0≥a, which brings the constraint

r0 ∈
〈9

8
,

5 +
√

27

8

〉

,

where the lower bound comes from the stability condition r0>9/8 guarantying finite central

value of pressure within the fluid. It is seen, that for the properties of fish-eye to manifest

the cloud would have to be of nearly critical extent, which is at least contradiction to weak

field limit, and, of course, the transparency of such an object is also out of question, as long

as even for the Sun the photons travel from its interior several thousands years, while the

number of their capture and re-emission lays beyond count.

It is time then to step to explicit solving Einstein equations subject to fish-eye creation

conditions. Due to Birkhoff theorem [Ste] and spacetimes class chosen there are no more

exterior solutions, whence we need to seek only within interior ones, as we indeed shell.

We keep for the nearest part of the work the presumption of weak field, which allows us to

make us of effective index of refraction simple definition (54).
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The (interior) solutions

The behaviour of the quantities describing solution of Einstein’s equations in the case chosen

– the pressure p(r), matter density ρ(r), the gravitational filed potential Φ(r) and the enclosed

mass-weight m(r) – is governed by three equations [Tho] (note that gtt =e2Φ, grr =1/(1−
2m/r)) : the field-strength equation

Φ′ =
m + 4πr3p

r(r − 2m)
(56)

hydrostatic equilibrium equation

p′ = − (ρ + p)(m + 4πr3p)

r(r − 2m)
(57)

and (defining) equation

m = 4π
∫ r

0
ξ2ρ(ξ)dξ . (58)

In our case the situation is right contrary to usual one: we know the metric coefficient –

deducing from (54) subject to (52) – and therefrom we try to find the matter that produces it –

i.e. its distribution and properties (state equation). Following this view it is worth rewriting

(57) to

p′ = −(ρ + p)Φ′ (59)

and as long region as matter distribution density is continuous and bound, (58) may be

written as

m′ = 4πr2ρ . (60)

a) the state equation for weak fields. Considering Φ given, we are able to separate pressure

from the field strength equation (56) and together with density from (60) it may be plugged

into hydrostatic equilibrium equation (59); a linear first-order ODE for mass is obtained,

whose solution is

m =
r3eχ

(1 + rΦ′)2

(

Const +

∫

(rΦ′′ + rΦ′2 − Φ′)(1 + rΦ′)
eχ

r2
dr

)

(61)

generally, with

χ = 2Φ −
∫

4Φ′

1 + rΦ′ dr .
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To achieve the properties of the fish-eye, we need to write now 1
/
√

e2Φ=nm whence a direct

choice

Φ = ln
1 + (r/a)2

n0

is obtained. Fixing integration constant in (61) such that ρ|r=0≡ρc we then have

m=
4πa4/3ρc

3

r3

(3r2+a2)2/3

ρ=
a4/3ρc

3

5r2+3a2

(3r2+a2)5/3
(62)

p=
1

2π
(3r2+a2)2/3−2πa4/3ρc(5r2+a2)/3

(a2+r2)(3r2+a2)2/3
.

Note that along radial coordinate density is falling, mass is rising with mc=0 and for pressure

pc =
1

2πa2
− ρc

3
,

hence, the class of solutions obtained seems physically reasonable. To keep central values

of state quantities non-negative,

0 ≤ ρc ≤ 3/(2πa2)

have to hold, keeping the density low in agreement with the weak-field presumption.

Within the quite broad class of solutions just presented, there is one physically very inter-

esting. Namely, for the choice ρc=3/(4πa2) we get

pc = ρc/3,

hence the relativistic fluid state equation in the centre of the body.

In correspondence with the reasoning from the first paragraph we must guarantee R0≥a.

To do so, we use the freedom within relationship a∼ρc: as can be seen, by choosing ρc

small enough, we can always acquire supercritical extent of physical cloud. Moreover it is

in accordance with the approximation request to choose ρc small.

We observe, that for sewing the metrics on the border we still have a degree of freedom in

choosing of n0 from the second equation. To do it, we first use the first one to exclude the

one-third exponent, and gaining thus significant simplification, we can finally write

n0 =

√

1 + 5
R2

0

a2
.
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Our treatment is thus completely physical, as can be directly observed from the fact, that

n0>1 always holds.

In the following part of the work, we drop the effective index of refraction and will discuss

more accurate approaches – the fact that the field should however not be strong (trans-

parency) obviously holds.

b) ad hoc mass. The relativistic factor in (55) gets also approximed by one if

m(r) = αr,

with α small. Such a choice does not restrict the freedom needed to construct the properties

of the fish-eye, however, unphysical state quantities behaviour is obtained.

c) the precise solution Another way is to make such a choice that this relativistic factor

particularly moved to the desired place within the square root. This happens for

m =
r2/gtt − n2r2

2̺/r − 2n2r
.

Note, however, that either mass or field strength would have to depend on ray parameter -

behaviour evoking for a spacetime a vision of an anisotropic medium, which is completely

physically unreasonable.
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The Focus of a Cluster and Its Aberrations

In this chapter, general idea of focusing is studied within the framework of optics extension

into general relativity (covariant optics). In a configuration of static spacetime, the general,

mathematically rigorous treatment is presented of rays, wavefronts and caustics of spherical

symmetry, particularly with regard to problems of their obtaining within general relativity.

As a concrete result, the cluster focal length and its aberration structure are obtained. In this

way, a gravitational lensing situation is depicted in terms of being a real lens.

We will present the treatment in static, spherically symmetric case, allowing us – after

choosing e.g. a point source of radiation – to unambiguously identify the optical axis with

symmetry axis and make use of symmetry gained simplifications. From a mathematical

insight [Arn], we then expect the caustic to be shaped as a revolution of cusp type catastrophe.

Also, only spherical aberrations of however (generally) all orders are expected to rise for

any axisymmetric source.

Let there be a static spherically symmetric solution to Einstein equations, valid in spacetime

region Σ. In spherical coordinates (r, ϑ, ϕ), this generally admits the metric

Σ : ds2 = gt(r) c2dt2 − gr(r) dr2 − r2( dϑ2 + sin2 ϑ dϕ2), (63)

with c the speed of light. On a non-empty intersection σ with equatorial (hyper)surface

ϑ=π/2 this brings

Σ|ϑ=π/2
= σ : ds2 = gt c2dt2 − gr dr2 − r2 dϕ2 .

We will restrict ourselves to this cross-section.

The geometry

Let the solution of interest to Einstein equations consist of two metrics, properly sewed on

r=r0 , with the point source of radiation at [rs, ϕs] lying not in the inner region: rs≥r0.

The particular eikonal for a general ray passing into the inner region at [r0, ϕin] and leaving

it subsequently at [r0, ϕout] after passing the turning point of r=a, as visualised by Fig. 1,

gets

θ:ψ−ψ0=
ω
c

(t−t0)−(−1)k
ω
c

̺(ϕ−ϕs)−

−(−1)m
ω
c

r0
∫

rs

−
r
∫

r0

Θouter(y)dy−2(−1)m
ω
c

a
∫

r0

Θinner(y)dy,

62



Electromagnetic Waves in a Gravitational Field

where

Θ(y) ≡

√

√

√

√gr(y)

(

1

gt(y)
− ̺2

y2

)

are integrands from (18), with the subscript choosing solution, whose metric coefficients are

appropriate. Then particular ray equation gets

π : ϕ − ϕs = −(−1)k+m

r0Z
rs

−
rZ

r0

Πouter(y) dy − 2(−1)k+m

aZ
r0

Πinner(y),

where

Π(y) =
∂Θ(y)

∂̺
≡ ̺

√
gr(y)

y2

√

1

gt(y)
− ̺2

y2

are integrands from (20). In this way, only those situations, when rays, that enter the inner

solution region, exhibit in it its (single) turning point and after leaving to outer one, they

(from symmetry) show no other turning points, are taken into account.

2rg

[r0, ϕin]

[r0, ϕout]

[rs, ϕs]

r = a

[r, ϕ]

Fig. 1. The sketch of geometrical situation

concerning a ray (thick curve): within the

great circle the inner solution is valid, with

the black ring showing extent of mass crit-

ical radius. Note, that no further scaling

information is needed, if radial coordinate

is expressed in critical radii.

Let us now formally evaluate the caustic κ=∂π/∂̺. As there are no turning points within

outer solution, the integrands exhibit no singularities up to its border as well as the integra-

tion end-points are simply constant there. Thus,

κ :

r0Z
rs

−
rZ

r0

Κouter(y) dy + 2
∂

∂̺

aZ
r0

Πinner(y) dy = 0,
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where

Κ(y) =
∂Π(y)

∂̺
≡ c

ω

√
gr(y)

gt(y)

1

y2

√

1

gt(y)
− ̺2

y2

3

are integrands as in (23). The lengthy calculation according to (22) is not required in second

term , if we happen to know the value J of the full angular accrument along the ray in the

fluid analytically:

2

a
∫

r0

Πinner(y) dy = J (̺);

in that case, we finally obtain the equation of caustic in form

ϕ−ϕs=−(−1)k+mJ−(−1)k+m

r0Z
rs

−
rZ

r0

̺
√

gr

y2

s
1

gt
− ̺2

y2

dy

0=
∂J

∂̺
+

r0Z
rs

−
rZ

r0

√
gr

gt

dy

y2

s
1

gt
− ̺2

y2

3

where all metric coefficients present are the outer solution ones. To obtain caustic in para-

metric form, the second of equations must be understood as implicit equation for r(̺), and

subsequently the first one as an explicit equation for ϕ(̺,r(̺)). Even though ̺ is not generally

the value of turning point radial coordinate, still, ̺=0 is the only ray passing through ori-

gin. Thus, an expansion in the vicinity of optical axis (coming from symmetry) is acquired

by expanding the coordinates for small ̺. Using implicit derivatives formulas we obtain

general expression of caustic

r(̺)=r(0)+
r(0)2

gt
√

gr
·∂

2J

∂̺2

∣

∣

∣

∣

∣

0

·̺+
r3(0)

gt
3gr













∂3J

∂̺3

∣

∣

∣

∣

∣

0

+3

r0
∫

rs

−
r(0)
∫

r0

√
grgt

2

y4
dy







√
grgt

2

r(0)
−

− gtgr
′r(0)+2r(0)grgt

′−4grgt

2gr

(

∂2J

∂̺2

∣

∣

∣

∣

∣

0

)2






̺2

2
+...

ϕ(̺)=
(

ϕs−(−1)k+mJ (0)

)

−(−1)k+m







∂J

∂̺

∣

∣

∣

∣

∣

0

+

r0
∫

rs

−
r(0)
∫

r0

√
gtgr

y2
dy






̺−

−(−1)k+m
(

1+
2√
gt

)

·∂
2J

∂̺2

∣

∣

∣

∣

∣

0

·̺
2

2
+...

(64)
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with r(0)≡r|̺=0 defined implicitly as

r(0) :

r0
∫

rs

−
r
∫

r0

gt
√

gr

y2
dy +

∂J

∂̺

∣

∣

∣

∣

∣

0

= 0;

outside integrals, all metric coefficients in last equations are to be treated as evaluated in

r(0).

The equation of projection of eikonal along ray (21) gets

λ : ψ̺ − ψ0 = −(−1)m
ω
c

r0Z
rs

−
rZ

r0

Λouter(y) dy − 2(−1)m
ω
c

aZ
r0

Λinner(y) dy,

where

Λ(y) = Θ(y) + ̺
∂Θ(y)

∂̺
≡

√
gr

gt

√

1

gt
− ̺2

y2

are integrands from (21). Taking now the equation ψ̺=const of constant phase accrument

along ray for implicit expression for r(̺) of the wavefront (into the constant, the signs and

factor ω/c are set to stick to geometrical substantiality of wavefront) and using ray equation

similarly to the case of caustic, one finally obtains the parametric expression of wavefront in

form

r(̺)=r(0)+

√

gt

gr
·∂I

∂̺

∣

∣

∣

∣

∣

0

·̺+

+

√

gt

gr







∂2I

∂̺2

∣

∣

∣

∣

∣

0

+

r0
∫

rs

−
r(0)
∫

r0

√
grgt

y2
dy− 1

2

(

∂I

∂̺

∣

∣

∣

∣

∣

0

)2
gr

′gt−grgt
′

√
gr

3√gt







̺2

2
+...

ϕ(̺)=
(

ϕs−(−1)k+mJ (0)

)

−(−1)k+m







∂J

∂̺

∣

∣

∣

∣

∣

0

+

r0
∫

rs

−
r(0)
∫

r0

√
gtgr

y3
dy






̺−

−(−1)k+m

(

1−2
gt

r(0)2
·∂I

∂̺

∣

∣

∣

∣

∣

0

)

·∂
2J

∂̺2

∣

∣

∣

∣

∣

0

·̺
2

2
+...

(65)

with r(0) defined implicitly now from

−
r0
∫

rs

−
r(0)
∫

r0

√

gr

gt
dy − I(0) = const;
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I(̺) is the ray total phase accrument along ray within the inner part of solution,

2

a
∫

r0

Λinner(y) dy = I(̺) .

Particular metric and the results

Let us choose for particular configuration the inner constant mass-density fluid solution and

the outer, Schwarzschild one [Ste], with the field of electro-magnetic point source testing.

On an equatorial section ϑ=π/2 we obtain

ds2=





3

2

√

1− rg

r0
− 1

2

√

1−rgr2

r0
3





2

c2dt2− 1

1−rgr
2

r0
3

dr2−r2dϕ2, r≤r0

ds2=
(

1−rg

r

)

c2dt2− 1

1−rg

r

dr2−r2dϕ2, r≥r0 .

with rg the critical radius of matter involved, rg =(2MG/c2) in SI units.

Within the Schwarzschild solution, all integrals involved in (18)—(22) are elliptic, approving

the introduction. However, owing to the advantage of focus definition, the reduced integrals

within expansion coefficients of (64), (65) are elementary. Recalling that ̺≥0 was chosen,

we state the turning points for metrics chosen,

aSchw =
2̺√

3
cos

(

π
3
− 1

3
arccos

3
√

3

2̺

)

afl =
3

r0
̺

√

1 − rg
r0

−
√

r0
2

̺2 − 2rg
r0

+
9r2

g

4r0
2

2
r0
̺2 +

rg
2r0

2

.

It is a matter of lengthy discussion of technical kind, that their behaviour is as expected in

previous section, i.e. for rays closing to origin from high radial values, the stated expressions

are the only turning points present; moreover, for all rays that are to enter fluid, aSchw<r0

holds. More interestingly, for a fluid chosen,

J = −π −
∑

±
arcsin

3̺2rg(r0 − rg)/
√

r0 ∓ ̺2rg
√

r0 − rg − 2r0
3
(√

r0 ∓
√

r0 − rg
)

r0

(√
r0 − rg ∓√

r0

)

√

4r0
4 − 8̺2rgr0 + 9̺2r2

g

,

where the double signs stand for summing two terms within J , once with upper signs and

once with the lower ones. Then r|̺=0 for caustic becomes

r(0) =
r0

2rs

(3rgrs − r0
2)

, (66)
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which is the radial coordinate value of caustic axial point, i.e. the focus of the lens position.

Note that though emerged from expansions, by definition of the focus, this value is exact.

Following the calculations, we can for the metrics chosen write

I = −4
ωr0

2

crg

√

8
r0

rg
− 9





π
2

+ arcsin

√
r0

3(3rg − 2r0)
√

r0 − rg

√

4r0
4 + 9̺2r2

g − 8̺2rgr0



 .

Adopting now the general form of axial wavefront h=const within Schwarzschild geometry

(83) is

h=[r+rg ln(r−rg)+c0]+

+
r

−2+rc2
(ϕ−ϕA)2+

−1

2
rg+

2

3
r+r4c4

(−2+rc2)4
(ϕ−ϕA)4+...,

(67)

i.e. to completely describe such wavefront, a single constant in every order of expansion is

to be specified. To find the value of ϕA around which to expand the wavefront, we proceed

as follows. The choice of point source has unambiguously given rise to optical axis as

coordinate line passing through source and origin. The optical axis is thus realized by ray

̺=0 which gives e.g. from (65)

ϕ = ϕs − (−1)k+mJ (0) = ϕs + (−1)k+mπ,

which indeed is the continuation of coordinate line ϕ=ϕs. Note, that the same holds for

caustic (64), i.e. the cusp of a caustic, which is also the focus point, lies on this axis, as

anticipated in introduction. The integers k, m also confirm to (but) rule the orientation of

the ray(s).

Substituting into general expression (67) the equation (65) for eikonal along ray and re-

expanding in powers of ̺ enables us to find the values of aberration constants in form

c0=−I(0)−2[r0+rg ln(r0−rg)]+rs+rg ln(rs−rg)

c2=2
3rsrg−r0

2

r0
2rs

c4=− 1

3r0
6

(81r3
g −108r2

g r0+15rgr0
2+16r0

3)+
2

3rs
3
− 1

2

rg

rs
4

...

(68)

To find the wave aberration in terms of wave progress difference, let us state the aberration

coefficients (85) within Schwarzschild solution for axial point source [r′
s, ϕA] wavefronts
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h′=const′before turning point:

c′0=r′
s+rg ln(r′

s−rg)

c′2=
2

r′
s

c′4=
1

6

3rg−4r′
s

r′
s

4

...

Now, as a basis of aberration formulation, the first two terms in expansion of wave progress

difference (87),

0=(c0−c′0−const+const′)+
r2(c′2−c2)

(−2+rc2)(−2+rc′2)
(ϕ−ϕA)2+

+







−rg

2
+

2r

3
+r4c4

(−2+rc2)4
−
−rg

2
+

2r

3
+r4c′4

(−2+rc′2)4






(ϕ−ϕA)4+...

can be always annihilated by suitable choice of reference (point) source position and phase.

Namely here, for any r′
s, the const′ can be set to equal the absolute term within last equation

zero, and, confronting the second aberration coefficients, we obtain

c2 = c′2 : r′
s =

r0
2rs

3rsrg − r0
2

in direct agreement with (66). In this way, within Gaussian optics, the focus point is the

apparent point source for emerging wavefronts. The first non-zero term gives rise to the

wave progress difference expansion

h − h′ =
r4(c4 − c′4)

(−2 + rc2)4
(ϕ − ϕA)4 + . . . (69)

which is the lowest spherical aberration term. The behaviour of higher order terms is similar:

the condition that the wave progress difference is zero only if the wavefronts are identical

(ck =c′k) is manifest; note however, that for such behaviour, the general potentiality of lowest

two aberration coefficients identification is crucial. This behaviour forms the fundamental

of Gaussian optics.

Conclusion

In this chapter, a general way of mathematically rigorous manipulation with optical ideas

of focusing via caustic study within the frame of the general relativity has been presented.

Expressions for caustic (64) and wavefront in the sense of the eikonal along ray (65) for testing
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electro-magnetic field on the equatorial section of static spherically symmetric space-time

were obtained. As a consequence, upon choosing particular configuration, the exact value

of perfect fluid lens focus (66) was given for a testing-field point source,

rf ≈ r0
2

3rg
,

here in far source limit.

2rg

Fig. 2. The caustic (thick curve) situation of cluster with r0=7rg for far source configuration. The

caustic cusp point (the focus of a system) is then at r=161/3rg . Several inner rays are shown, all

inevitably touching the caustic, that actually extends to radial infinity before touching the boundary

ray. Hence, despite the diffractional corrections – that make the intensity along the caustic appropri-

ately smaller especially for low-dense matter – the optical influence of cluster intervenes significant

range of ambient universe

Also, the constants (68) in the aberration expansion of the wavefront were obtained, more-

over, using momentum eikonal formulas only. In addition, a comparison with point source

aberrations was performed, confirming the Gaussian position of focus. The expansion of

wave progress difference (69) was acquired, which starts with lowest spherical aberration

term, as expected. The reason, why only the axial expansion is needed, lies in the fact, that

the optical influence for the cases of interest is inconsiderable only for good alignment of

source, deflector and observer.

Making use of the general treatment presented in this work, different configurations results

are easily obtainable.
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2rg

Fig. 3. The situation for far source wave-

fronts near detail of caustic (thick curve). De-

picted are the phase equip-spaced wavefronts,

the bold segments showing the inner region

traversed part. The ̺ parameter extent is

same for all wavefronts shown. As can be

noted, the caustic indeed serves as a set of

wavefronts singularities. Also note, that the

orientation of caustic is opposite to case of re-

flection on a spherical mirror. In other words,

the spherical aberration (of lowest order at

least) for the cluster is of opposite sign to mir-

ror one.

70



Electromagnetic Waves in a Gravitational Field

The Light within the FLRW Models

The general metric element (5), obeying the requirements of the cosmological principle (that

can be formulated as homogeneity and isotropy of the Universe) reads

ds2 = c2 dt2 − a(t) dl2,

where with the foliation presented, dl2 has the meaning of space arc-length element, whereas

dl2 = dw2 + f 2
k

(w)( dϑ2 + sin2ϑ dϕ2),

with

fk(w) =























1√
k

sin(
√

kw) k>0, w∈〈0,π〉

w k=0, w∈〈0,1〉
1√
−k

sinh(
√
−kw) k<0, w∈〈0,∞) .

As is well known [Bur], the three cases stated cover the global topology of the space section

of a 3-sphere, R3, and 3-pseudo-sphere, respectively. In physical terms they are the closed,

the flat and the open universes.

A complete impulse integral to eikonal equation ψ,kψ,k=0 in our case is now

ψ =

∫

λ dt

a(t)
− (−1)kΨϕ − (−1)l

∫

√

C − Ψ2

sin2ϑ
dϑ − (−1)m

∫

√

λ2 − C

f 2
k

(w)
dw .

On the equatorial section ϑ=π/2 (with the auxiliary relation C≡Ψ2) this reads

ψ =

∫

λ dt

a
− (−1)kΨϕ − (−1)m

∫

√

λ2 − Ψ2

f 2
k

dw,

whence the ray equation

ϕ = (−1)k+m

Z
̺/fkq
f2

k
− ̺2

dw, (70)

with the usual notation Ψ=λ̺ towards the multiplicative constant. The appropriate eikonal

along ray gets

ψ̺

λ
= −(−1)m

∫

fk dw
√

f 2
k − ̺2

.

71



Electromagnetic Waves in a Gravitational Field

The rays behaviour can be qualitatively found from the rooted expression decomposition

(fk(w) + ̺)(fk(w) − ̺),

whose vanishing can be understood graphically as crossing of horizontal lines ±̺ with three

curves: sin, id, sinh in the correct intervals (see Fig. 1.).

w

fk(w)

̺

w
sinh(w)

sin(w)

Fig. 1. The rays behaviour in the three

FLRW cases. The rays can exist only

within intervals of angular values, where

the curves are bold

The negative ̺ can be omitted without loss generality, and thus we can conclude, that in the

flat case, the rays minimal radial coordinate is ̺ as expected. The behaviour of rays in open

case is qualitatively the same, but for the closed one, the value of w oscillates between two

values. As for the open case, the reason for such behaviour resides in monotony of fk(w);

the closed solution ray will thanks to symmetry of fk(w) exhibit two turning points, which

lie symmetrically with respect to the equator. The particular ray equation is now of a form

ϕ − ϕ0 = (−1)k+m

Z f inv
k

(̺)

w0

±
Z w

f inv
k

(̺)

̺/fk(χ)q
f2

k
(χ) − ̺2

dχ,

where χ=f inv
k

(̺) is the solution of equation fk(χ)=̺, i.e. (in the same order),

f inv
k

(̺) =























1√
k

arcsin(
√

k̺)

̺

1√
−k

argsinh(
√
−k̺) .

In closed case the expression should actually be a bit more complicated by a sum of full

periods finished between the turning points. Note, however, that for the finally collapsing

universe there is not enough time for the light to perfect more than one full period.

Using the procedure from the chapter Parametric derivatives of singularity containing
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integrals we obtain a caustic in form

0=

∫ f inv
k

(̺)

w0

−f 3
k

(χ)(f inv
k (̺)−w0)+̺f ′

k(χ)(χ−w0)f inv′
k (̺)(2f 2

k
(χ)−̺2)

f 2
k

(χ)(f 2
k (χ)−̺2)3/2(f inv

k (̺)−w0)
dχ±

±
∫ w

f inv
k

(̺)

−f 3
k

(χ)(f inv
k (̺)−w)+̺f ′

k(χ)(χ−w)f inv′
k (̺)(2f 2

k (χ)−̺2)

f 2
k

(χ)(f 2
k

(χ)−̺2)3/2(f inv
k (̺)−w)

dχ .

Owing to the simplicity of the configuration chosen, we can however state the caustic also

from the particular ray equation (coming from (70))

ϕ − ϕ0 =











































[

π
2 +arctan

̺cosw0
√

sin2w0−̺2

]

±
[

π
2 −arctan ̺cosw√

sin2w−̺2

]





π
2 +arctan ̺

√

w2
0
−̺2



±
[

π
2 −arctan ̺√

w2−̺2

]

[

π
2 + 1

2 arctan

(

1
2

2̺2+̺2 sinh2w0−sinh2w0

̺coshw0

√

sinh2w0−̺2

)]

±
[

π
2 − 1

2 arctan

(

1
2

2̺2+̺2 sinh2w−sinh2w

̺coshw
√

sinh2w−̺2

)]

,

where the pairing into the brackets visualises the terms from the individual integrals in

particular ray equation (the right-angles always appear in a turning point). Thus the caustic

gets

0 =























cosw0

√

sin2w0−̺2∓cosw

√

sin2w−̺2

√

w2
0−̺2∓

√

w2−̺2

coshw0

√

sinh2w0−̺2∓coshw

√

sinh2w−̺2 .

Using the non-equivalent modification we would get the solutions cosw0=cosw, w0=w,

coshw0=coshw, respectively. With their check back in original equations the situation for

the last two cases reduces to w=w0 before a turning point a nothing after a turning point

– i.e. in the flat case as well as in the open case there is the only caustic point: the source

itself, the rays defocus inevitably. In the closed case both opposite solutions are valid, hence

except the source there is one more caustic point behind the turning point: the associated

focus point at the pole opposite to the source position.

Using the generalisations of the FLRW models, allowing for small inhomogeneities the

caustic structure would get more complicated, however fully solvable by the constructions

hereby presented.
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Part Two
The Aberration Formulation

In this section a different, more abstract approach to relativistic optics formulation is intro-

duced. Starting from the general existence of semi-geodesic coordinates, the optical system

properties are reduced to complete description by a set of constants – the expansion ones.

Afterwards, a matching with reference wavefront is performed, which gives a new set of

constants, the aberration ones. It is shown, how in this way the Gaussian optics has been

constructed within curved spacetimes.
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The Optical Axis

Recall a general (n+1)-dimensional spacetime metric

g = gtt(dt)2 + 2gta dt dxa + gab dxa dxb, a, b = 1, 2, . . .n (71)

and suppose existence of time-separable coordinate eikonal ψ with multiplicative constant ω,

i.e.

ψ = ωχ(t) − ωh(xa)
∣

∣g(dψ, dψ) = 0, (72)

which, of course, constraints g. The spatial projections of ψ=const form the wavefronts,

which due to (72) are thus h=const.

Let there henceforward be a space (true) length element (dl)2 given; following [Lan] the

corresponding metric l comes from (arbitrary) metric (71) as

l ≡ γ̃ab dxa dxb =

(

∓gab ±
gtagtb

gtt

)

dxa dxb, γ̃ab = ∓gab (73)

provided signature (±, ∓, ∓, ...) is used. As a Riemannean manifold can always be adopted

with semi-geodetic (normal) coordinates (xn, xα) [Kor], element (73) may be transformed to

l = gnn(dxn)2 + γαβ dxα dxβ, α, β = 1, 2, . . .n − 1 (74)

with gnn>0 otherwise arbitrarily customisable. The meaning of xn coordinate is such, that

lines xα=const are geodesics everywhere (locally) perpendicular to transversal hypersur-

faces T : xn =const whose metric τ is the transversal part of (74), i.e. T : τ=γαβ dxαdxβ. As a

matter of fact, there is still one degree of freedom, that allows for gnn=1, which makes ∆xn

directly an arc length. We will however use the normal geodesic coordinates in the general

form stated above.

An infinitesimal transversal element is then

∆lτ =
√

γαβ∆xα∆xβ .

It is just this infinitesimal arc, where there is no need to actually integrate along the geodesics

connecting the points whose distance is seeked. The physical reason why we can use the

infinitesimal transversal arc resides in the fact, that we aim to construct an aberrational

formulation, which is to bring only expansions in powers of small values of the arcs. Thus,

the infinitesimal arc is of high interest to optics, for the simplification it brings is crucial.

By expansion (of the wavefront) in the powers of transversal element we mean expansion

h =
∞
∑

i=0

hi(xn)φi(∆lτ), (75)
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where, obviously, carrying out the expansion in xκ coordinates yields the full (Taylor)

expansion of the wavefront.

We can now (with regard to Minkowski case compatibility) define an optical axis:

By an optical axis we mean a coordinate curve xκ =konstκ, for which it holds, that the

wavefronts of every point source lying ibidem are in its vicinity expanded in the powers

of transversal arc only.

Here comes the great utility of semi-geodesic coordinates within optics: as these coordinates

exist on every Riemannean manifold, they can be made a general tool for study the optical

properties. In every particular case, any of xα=const serves as optical axis candidate.

Note, that the above definition of optical axis is existence-like. It says, that we can pick a

candidate for the axis and try whether the wavefront that is axial with respect to this axis

allows for the expansion in transversal arc. It is only when it does, that the candidate was

chosen correctly. Hence, it cannot be told in advance what will be the optical axis in a given

spacetime (if any at all). This is the cost for allowing the curved spacetimes.

The general axial wavefront expansion is then

h =
∞
∑

k=0

hk(xn)φk(γαβ∆xα∆xβ), (76)

where the φk are the power-law functions. The exponent we must generally assume, will

be a rational one – in this way, a square root of the arc could be moved into φk ; we expect

the non-vanishing powers present in the last expansion to be of even order, i.e. of form

2(k−1)/(2n−1) with k, n∈N, n is fixed.
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The Axial Wavefront Expansion Coefficients

We shall consider in the following a static spacetime

ds2 = gtt dt2 − dl2,

where dl2=gαβ dxαdxβ, with gαβ(xκ). As can be seen, such a spacetime can be foliated,

and moreover, by true space sections. On these (Riemannean) sections, the normal geodesic

coordinates

dl2 = gnn( dxn)2 + γαβ dxα dxβ

can always be introduced (at least locally).

For the wavefront h=const from (76) we of course require, that the corresponding coordinate

eikonal ψ=ωt−ωh fulfilled the eikonal equation, i.e.

gnnh 2
,n + γαβh,αh,β = gtt

We will now restrict our attention to our usual two-dimensional case, making profit from

the fact, that the semi-geodesic metric (74) guarantees us within the two-dimensional space

the possibility of introducing the orthogonal coordinates. In case of canonical sections, we

can then have

dl2 = gnn(xn)( dxn)2 + gjj|xi=konst( dxj)2

The transversal part (with respect to coordinate xn) of the arc is thus gjj(dxj)2.

Let us now work out the definition of axial wavefront: the wavefront h=konst is guaranteed

in separated form, and hence, its expansion in transversal part of arc can be stated as

h =
∞
∑

k=0

hk(xn)φk(gjj(∆xj)2) .

The full expansion in powers of coordinate would be yielded by expanding the coefficient

gjj.

The eikonal equation is then reduced into

h 2
,n

gnn
+

h 2
,1

gjj
=

1

gtt
. (77)

In the following, we will consider the simple case, when the metric coefficients have their

Taylor expansions. Looking at the last equation, we can see, that the wavefront will have
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a Taylor expansion too. Hence, the general functions φk can be now specified, so that the

expansion of wavefront becomes

h =
∞
∑

k=0

hk(xn)(gjj(∆xj)2)k . (78)

To demonstrate the further progress, we consider hereafter gtt(xn), gjj(x
n), gnn(xn); this choice

is general enough to provide all the results necessary in the scope of this work. Plugging

the expansion (78) into eikonal equation (77) we obtain

0=

(

(h′
0)2

gnn
− 1

gtt

)

+

(

2
h′

0(h2gjj)
′

gnn
+4h2

2gjj

)

(∆xj)2+

+





2h′
0(h4g

2
jj )

′+(h2gjj)
′2

gnn
+16h2g

2
jjh4



(∆xj)4+...

(79)

where prime indicates differentiation with respect to xn. Note, that all the quantities present

are functions of xn only. We observe, that the last equation can be sequentially solved order

by order: indeed, in every higher order, just one new (unknown) coefficient appears. From

the absolute term, we obtain

h0 = ±
∫ √

gnn

gtt
dxn + c0 .

Note that the last (indeterminate) integral is meant formally (i.e. there shall come no further

integration constant from it), the same holds for all integrals, that shall appear in the expan-

sion coefficients. Plugging now this expression into the nearest higher expansion into (79)

we obtain

±
√

gnn

gtt

(h2gjj)
′

gnn
+ 2h2

2gjj = 0 .

This ODE is of separate kind, which easily yields

h2 = ± 1

gjj

(

2

∫ √
gttgnn

gjj
dxn + c2

) .

Similarly, these two coefficients can be plugged in the expression of nearest higher order. A
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linear ODE is obtained, which solved, gives

h4=±



































−2

∫

g2
ttgnn exp













2

∫

2g′
jj

∫ √
gttgnn

gjj
dxn+g′

jjc2+4
√

gttgnn

gjj

(

2

∫ √
gttgnn

gjj
dxn+c2

) dxn













√
gttgnng4

jj

(

2

∫ √
gttgnn

gjj
dxn+c2

)4
dxn+c4



































×

×exp













−2

∫ 2g′
jj

∫

√
gttgnn
gjj

dxn+g′
jjc2 +4

√
gttgnn

gjj

(

2

∫ √
gttgnn

gjj
dxn+c2

) dxn













and so on. Note that the behaviour with double sign is generic, so while the expansion is

equal zero, we will in further without loss of generality use the positive one.

Remembering the existive nature of optical axis definition, we can state, that in the case

chosen, the optical axis always exists and the expansion

h=

�Z r
gnn

gtt
dxn+c0

�
+

1

gjj

 
2

Z √
gttgnn

gjj
dxn+c2

! (gjj∆xj)2+

+

2666664−2

Z
g2

ttgnn exp
�
χ
�

√
gttgnng4

jj

 
2

Z √
gttgnn

gjj
dxn +c2

!4
dxn+c4

3777775exp
�
−χ
�

(gjj∆xj)4+...

(80)

with

χ = 2

Z 2g′

jj

Z √
gttgnn

gjj
dxn + g′

jjc2 + 4
√

gttgnn

gjj

 
2

Z √
gttgnn

gjj
dxn + c2

! dxn

is valid, where h=const are the wavefronts. The reason why our optical axis always exists

lies in the choice of metric coefficients dependent only on xn: in that simple case, there
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always exist a transformation of this coordinate, leaving the metric tensor in a form, from

which it is clear, that the symmetry of the space chosen is sufficient for the axis to exist.

To obtain the coefficients for the case of the flat spacetime with Cartesian coordinates, it is

(for optical axis chosen as y=0) enough to set xn≡x and equal all metric coefficients one.

Then, the wavefront is

(x + c0) +
1

2x + c2
y2 +

−2x + c4

(2x + c2)4
y4 . . . = const . (81)

In the polar coordinates, xn≡r and the only other difference to previous case is that gjj =r2.

The wavefront expansion brought up is

(r + c0) +
r

−2 + rc2
(ϕ − ϕ0)2 +

2

3
r + r4c4

(−2 + rc2)4
(ϕ − ϕ0)4 + . . . = const . (82)

For the expansion of an axial wavefront within equatorial section of Schwarzschild geometry

we then get

h=[r+rg ln(r−rg)+c0]+

+
r

−2+rc2
(ϕ−ϕA)2+

−1

2
rg+

2

3
r+r4c4

(−2+rc2)4
(ϕ−ϕA)4+...

(83)

Noting that (apart the signs) the solutions of equations determining the expansion coeffi-

cients were unique, we can observe that the expansion form (of the axial wavefront) is

characteristic for a spacetime (more precisely of a given metric) and most importantly is

thus independent of the particular wave chosen.

The only difference for different waves is lying within the specification of constants ck , as

in any aberration formulation theory should. We now show, how these constant can for

particular waves be obtained. It is shown within The focus of a cluster and its aberrations,

how to obtain explicit parametric formulas (r(̺), ϕ(̺)) for wavefronts from a ray equation

(13), caustic (14) and eikonal along ray; the procedure is general.

Having such formulas – which as a parameter contain the ray coordinate ̺ – we can plug

them into general expansion (80) and re-expand into powers of ̺. If the candidate was

properly chosen, in every order of this new expansion, one constant ck can be precised.

The spherical wavefronts
p

(x−x0)2+y2 =const, centred in (x0,0), can be for x≥x0

parametrised as (x0+
√

const2−y2, y), whence the wavefronts itself are found determined

by the constants

c0 = −x0 c2 = −2x0 c4 = 2x0 . . . (84)
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The same wavefronts in polar coordinates,
q

r2+x2
0
−2rx0cosϕ=const, are determined

in the appropriate expansion (82) by constants

c0 = −x0 c2 =
2

x0
c4 = − 2

x3
0

. . .

The expansion coefficients before turning point for a testing field point source [rs
′, ϕA] in

Schwarzschild background read

c′0=r′
s+rg ln(r′

s−rg)

c′2=
2

r′
s

c′4=
1

6

3rg−4r′
s

r′
s

4

...

(85)

Note, that for true wavefronts the constant numerating the wavefronts is never present in

the expansion constants. This is another usefulness of this approach, for in such a case the

number of parameters is equal the number of ones that caustic has. In our two-dimensional

case of interest, the constants are themselves parameter-less (as is also the caustic, as has

been shown before).

Let us finally discuss the case, when the metric is sewed from more parts. We are interested in

how the wavefront expansion coefficients will be modified. When the spacetime was covered

by single metric, the constants [xn
0 ,x1

0]≡[xn
s,x1

s] appearing within coordinate eikonal were

directly the point source of radiation coordinates [xn
s,x1

s]. Now, this will hold only within

the (simply) connected region of metric validity, which contains the point source. In all other

parts of the spacetime, it however still holds [xn
0

(xn
s ,x1

s,ρ),x1
0

(xn
s ,x1

s,ρ)]. In this way, we have

to use in every point of spacetime the appropriate metric wavefront expansion a get the

knowledge of the constants relation to point source coordinates. The expansion treatment is

not changed itself.
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The Wave-Aberration Coefficients

To discover the optical properties of the optical system, which is described by the axial

wavefront expansion (80)

h=

�Z r
gnn

gtt
dxn+c0

�
+

1

gjj

 
2

Z √
gttgnn

gjj
dxn+c2

! (gjj∆xj)2+

+
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in the spacetime domain, where the metric whose coefficient are used is valid, we confront

these waveefronts with another, refernce, system of (axial) wavefronts, which we describe

generally by
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The crucial quantity is the wave progress difference, i.e. the difference δ=h−h̃, which gives
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(86)

This quantity δ lies in the roots of the Gaussian optics - the aberration formulation. To

observe it, we pick for the reference wavefronts h̃ the ones from a point source of general

axial position xn=xn
r. This gives us two degrees of freedom: apart the source position, a

phase constant c̃ of the reference wavefronts can be independently set so that δ=c−c̃ held.

Then, we need not care about the absolute term in (86) and set the reference source position

to annihilate the second-order term therein. The consequencies of such choice are much

farer-going: now χ=χ̃, which let us write

h−h̃=(c4−c̃4)exp
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The behaviour of the higher-order terms is similar: the condition, that the wavefronts are

identical, only if their expansion coefficients coincide, is manifest.

In the flat case, the wave progress difference reads

δ =
c4 − c̃4

(2x + c2)4
y4 +

4(c4 − c̃4)(2c2 + c4 + c̃4) + (c6 − c̃6)(2x + c2)

(2x + c2)7
y6 + . . .

The construction here provided is indeed in the roots of Gaussian optics, for choosing a point

source wavefronts as reference ones gave rise to a Gaussian focus of the optical system - a

point, from which the (curved) spherical waves emerge. Apart the expansion coefficients, a

wavefront can be equivalently described by a set of constants Ck =ck−c̃k. If chosen c̃k for a

point source wavefronts, emerging from Gaussian focus, the constants Ck are the aberration

coefficients. As can be seen, as we considered the axial wavefronts only, the aberration

expansion contains terms corresponding to spherical aberrations of general orders only.
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The Caustic Expansion

Finally, let us return to the end of Part One, where we tried to establish a connection

between the caustic and the wavefronts. The problem was, that the form of wavefront

cannot be considered known generally, hence the computations were interrupted. Now,

however, we have the axial wavefront expansion generally available.

We adopt a bit different treatment, than was chosen before. Recall that there is a relation

between wavefronts and ray families. We used it previously to determine the Laplacean

of the wavefront with the knowledge of impulse representation eikonal only. Now, we

make use this relationship from the other side: if h=const are the wavefronts, then the

corresponding rays f =const must be given from

df̃ = ∗dh .

Recalling also that the caustic is invariant to diffeomorphisms of rays, we now need not

seek the integrating factor and use any candidate for the ray family directly. Looking at last

equation, from the same reason, any candidate for wavefronts can be used. Continuing,

the caustic is given as a parameter derivative of ray family, hence, as long as the partial

derivatives permutability, we have κ=∂f̃/∂̺ and thus,

∂

∂̺
∗ dh = 0

is the equation of caustic, if the coordinate representation eikonal only is given. This is the

sought for result.
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Conclusion

The main result of the work is the abstract construction of axial wavefronts expansion

(80), which can obviously serve as a start to classification of optical systems within curved

spacetimes. Based on the fact, that this expansion and the subsequent obtaining of wave

aberrational expansion (87) are formed utilising the semi-geodesic coordinates, that are

guaranteed on every Riemannean manifold, these results are very general. As a main result

from the first part of the work, which successfully establishes the covariant formulation of

geometrical optics within curved spacetimes may serve the coordinate eikonal Laplacean

(34), found only with the knowledge of momentum representation formulas. Avoiding thus

the need of Legendre transformation, other formulas and connections are provided as well.

The application of the formulas obtained is shown clearly within the intermediate part of

this work. As main applications, the original class of solutions (62) to Einstein equations that

reproduces the Maxwell’s fisheye analog in the scope of gravitational lensing and obtaining

the focus (66) of the cluster and its aberrational structure (68),(69) as a GL example have to

be considered.

As far as the author of this work is aware, all the results stated above are original.

Finally, let us note, that the field of gravitational lensing is well established domain of

interest. The main publications and articles are cited throughout this work, let us however

state here the total cumulative numbers for GL articles within past few years:

Years gravitational lensing strong lensing weak lensing microlensing

2000-2001 392 138 173 216

2001-2002 432 146 196 201

2002-2003 466 166 201 182

2003-2004 451 176 204 169

2004-2005 448 175 234 174

The results for the keywords stated in the table are taken from Citebase. Note, that the

numbers are fuzzy-dependent. It can be seen that the strong lensing is a traditional discipline

within gravitational lensing, whereas the weak one is on its rise; the period of maximal

interest in microlensing seems to be slowly over. The overall number of publications for

’gravitational lensing’ keyword in the interval of interest is 1303. The number of articles

published by Czech authors in the same period is 5-10.

There is a hope, that the results within this work might help improve the situation with

approximations, that so far have to superposed on the geometrical optics one.
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