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Dissertation Abstract:
Supersymmetry is a powerful symmetry that imposes severe restrictions on the the-
ory. One of the consequences is the restriction on the effective action. For N = 2
supersymmetric Yang-Mills theory the effective action is given by a single holomor-
phic function. This fact together with electromagnetic duality can be combined to
find the explicit form of the effective action. The effective action is described in terms
of an elliptic curve and suitable period integrals, which describe the scalar field and
its dual field. All of these objects depend on one or several moduli - gauge invariant
parameters that describe the theory.
The description of the effective action uses extensively magnetic monopoles. The
Bogomol’nyi-Prasad-Sommerfield monopoles can be used to combine the relationship
between the period integrals and moduli on one hand, and the spatial dependence of
the scalar field on the other to find the spatial dependence of the moduli themselves.
In this text the spatial dependence of the moduli is studied for N = 2 super-Yang-
Mills theories with gauge groups SU(2) and SU(3). To begin with, a first order
differential equation for the modulus of SU(2) is derived and the solutions are stud-
ied both numerically and analytically. The solutions can be divided into several
groups according to their behavior. The different types of behavior also affect the
magnetic and electric field as well as the energy density function.
For SU(3) it is necessary to generalize the procedure used for SU(2). After that
a system of differential equations is derived for the moduli. The moduli space is
larger than for SU(2), and more difficult to visualize. Suitable examples of curves of
marginal stability were chosen which are both representative and can be presented
also in three dimensional space. Suitable numerical solutions to the differential equa-
tions which can be easily visualized are presented as well.



Abstrakt:
Supersymetrie je symetrie, která zcela zásadně zuźuje možnosti teorie. Jedním z
důsledků této skutečnosti jsou požadavky na efektivní akci. Pro N = 2 supersymet-
rickou Yangovu-Millsovu teorii je efektivní akce dána jedinou holomorfní funkcí, což
spolu s elektromagnetickou dualitou umožňuje najít její explicitní tvar. Efektivní
akce je popsána pomocí eliptické křivky a vhodných integrálů - tzv. period, které
popisují skalární pole a duální skalární pole. Všechny tyto objekty závisí na jed-
nom či více kalibračně invariantních parametrech, jež popisují teorii, tzv. modulech.
Popis efektivní akce je založen na magnetických monopolech. Pomocí Bogomolnyiho-
Prasadova-Sommerfieldova monopolu lze zkombinovat vztah mezi periodami a mod-
uly na jedné straně a mezi skalárním polem a souřadnicemi v prostoru na straně
druhé. V této práci je studována prostorová závislost modulů pro N = 2 supersy-
metrickou Yangovu-Millsovu teorii s kalibračními grupami SU(2) a SU(3). Nejdříve
je odvozena diferenciální rovnice prvního řádu pro SU(2) a vlastnosti jejich řešení
jsou zkoumány numericky i analyticky. Řešení lze podle chování rozdělit do několika
skupin. Toto rozdělení se vztahuje i na chování elektrických a magnetických polí a
na hustotu energie. Pro SU(3) je nutno nejdříve zobecnit postup použitý pro SU(2).
Poté jsou odvozeny diferenciální rovnice pro moduly. Prostor modulů je větší než
v případě SU(2) a je obtížnější jej znázornit. Byly vybrány vhodné příklady křivek
marginální stability, které jsou reprezentativní a lze je vizualizovat v trojrozměrném
prostoru. Dále jsou ukázány vhodné příklady řešení diferenciálních rovnic, jež lze
rovněž dobře znázornit.
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Chapter 1

Introduction

The standard model of particle physics is a theory describing subatomic particles and
their strong, weak and electromagnetric interactions and has been very successful
at explaining a wide variety of experimental results. Calculations in the standard
model are mostly based on perturbation theory. Especially in the theory of the
strong interaction, Quantum Chromodynamics, computations at low energies, which
correspond to observable physics, are very difficult, since perturbation theory is not
applicable any more. In order to learn more about perturbative effects people have
turned to other quantum field theories in which the perturbative effects are easier
to describe. These theories serve as toy models, and hope is that the results can be
transferred back to Quantum Chromodynamics. One of the most popular toy models
are supersymmetric theories, especially N = 2 supersymmetric Yang-Mills theory.

Any symmetry imposed on a theory reduces significantly the possible configura-
tion choices: functions that describe particles or fields must transform in representa-
tions of the symmetry group, field equations must be invariant under this symmetry
and it can happen that some effects are simply forbidden because they would violate
the symmetry. Symmetries may involve internal degrees of freedom, e.g. charge, or
they may involve symmetries of the spacetime itself.
The most common spacetime symmetry is the Poincaré symmetry of special relativ-
ity and the internal symmetries are mostly matrix groups of low rank. Effort has
been made to combine these two types of symmetry (internal and spacetime) in a
nontrivial way, i.e. to create an algebra which would include the ordinary space-
time algebra and in which the spacetime algebra would have nontrivial relations
with the rest of the algebra (or at least part of it). However, Coleman and Man-
dula [1] showed that this is not possible within an ordinary Lie algebra. The way
out, as shown by Haag, Lopuszanski and Sohnius [2] is to use a graded Lie algebra
which is given by anticommutators as well as commutators. The corresponding, so-
called fermionic, generators transform in a nontrivial way under the Lorentz group,
creating in this way an extension of ordinary spacetime symmetry which is called
supersymmetry. Supersymmetry is a fairly strict requirement: it restricts the matter
content of theories, introduces specific internal symmetries and has also impact on
the (non)perturbative behavior. Fields must form representations of the supersym-
metry group which restricts our choice in terms of the spacetime fields. Superfields
are formed by combinations of several spacetime fields, so that we always have com-
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CHAPTER 1. INTRODUCTION 10

binations of bosonic and fermionic fields. In fact, it can be proven that there must
be the same number of bosonic and fermionic degrees of freedom. There are further
authomorphisms of the algebra, called R-symmetries which transform the fields in
a nontrivial way. These can be exact quantum symmetries or broken by anoma-
lies. In supersymmetric theories quantum corrections are suppressed. This is due to
the fact that bosons and fermions contribute with opposite sign, which makes the
corrections less severe. There are several varieties of supersymmetry, which have a
different number of fermionic generators. The N = 2 supersymmetric theory is es-
pecially popular, since it benefits from the restrictions that the two sets of fermionic
generators impose (e.g. the effective action of the gauge field is given by a single
holomorphic function and there are only one-loop corrections to the effective action)
but still keeps enough of its nontrivial quantum behaviour to be interesting (unlike
e.g. N = 4 which has a trivial beta function).

Electromagnetic duality is a very old idea. In fact, already the form of the
Maxwell equations raises the question why electric and magnetic degrees of freedom
are treated so differently. Dirac [3] found a solution with a magnetic charge - a
magnetic monopole, and showed that the magnetic charge must be quantized. A
nonsingular solution was found by [4]. The quantization condition was later modified
by Zwanziger and Schwinger to accomodate also dyons - particles with both electric
and magnetic charges [5–7]. Solitons with a magnetic charge can be constructed in
Yang-Mills-Higgs theories, e.g. the t’Hooft Polyakov monopole [8]. Montonen and
Olive showed how exact electromagnetic duality could be implemented in various
theories [9]. The concept of electromagnetic duality was also used in strongly coupled
gauge theories. Here, the idea of having a dual formulation in terms of weakly coupled
magnetic monopoles has proven itself very useful. Furthermore, the dynamics in
these cases is closely related to properties of magnetic monopoles, that can be often
studied semi-classically.

Seiberg and Witten used electromagnetic duality and especially the ideas of dual
formulations in N = 2 super Yang-Mills theories with gauge group SU(2) to deter-
mine the exact form of the effective action [10,11]. This approach was soon extended
to other gauge groups and to the relation between moduli and spatial dependence of
the monopole within this context.

The goal of this theses was to study the details of the spatial dependence of
the monopole and related matters in SU(2) and to translate as much as possible to
SU(3). The SU(3) monopoles that were used are embedded SU(2) monopoles, so we
can expect similarities. On the other hand SU(3) possesses two moduli and thus we
can expect some new behavior related to the moduli which has no SU(2) analogue.
The details of the similarities resp. differences between the two cases were studied
as well.

The thesis was written with the hope that some day somebody might read it and
find it useful. Therefore the text is not as brief as it could be otherwise. Details have
been filled in for various calculations, so that the steps between are “overcomable”.
This holds also for those cases, where results can be found in literature and their
derivation is described only very briefly (and is not straightforward).
The thesis is organized as follows:
Chapter 2 contains a brief description of supersymmetry, since this is the key porop-
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erty that allowed Seiberg and Witten to find an exact solution for the effective action
in supersymmetric theories. Supersymmetry is a vast topic, it is clearly impossible
to explain even only all those aspects that are used in the later parts so my aim was
to give at least a first idea of its concepts and explain its role in the following.
In chapter 3 a general overview of monopole solutions in Yang-Mills-Higgs theo-
ries and supersymmetric Yang-Mills theories is presented. Special solutions as BPS
monopoles and t’Hooft-Polyakov monopole are described.
In chapter 4 the Seiberg-Witten approach is reviewed in detail for SU(2) and gen-
eralizations to other gauge groups are given as well. Quantum corrections to BPS
solutions are reviewed.
Chapters 5 and 6 are the core of this work. In these two chapters original results con-
cerning quantum corrected monopoles for SU(2) and SU(3) theories are presented.
Chapter 6 contains also definitions and generalizations of some aspects which are
either trivial or well-known for SU(2).
Calculations which would disrupt the flow of the text were moved to the appendices.
Some basic facts about the hypergeometric function and Appell’s function are re-
viewed in appendix A. Appendix B contains expansions which are needed for the
calculations in chapter 5. A few basic facts about SU(3) as well as notations and
conventions used in this text are given in appendix C. Appendix D reviews a sys-
tematic way to set up Picard-Fuchs equations and for the two gauge groups SU(2)
and SU(3) is described in more detail. Appendix E contains the derivation of the
solution of the Picard-Fuchs equations for SU(3). More details were added to the
results found in literature, so as to make each single step more clear.



Chapter 2

Supersymmetry

2.1 Review of Supersymmetry

In this section we shall give only the some basic facts about supersymmetry. We will
restrict ourselves to facts, that will be useful in the following. For good introductions
on supersymmetry see eg. [12], [13], [14] and [15], In the following we will use the
notation and conventions of [15].

2.1.1 Superalgebras

Coleman and Mandula proved in [1], that under certain physically reasonable as-
sumptions, the only possible symmetries of the S-matrix are :

• Poincaré invariance, which is the semi-direct product of translations and Lorentz
rotations

• internal symmetries, forming a Lie algebra

• discrete symmetries C, P and T.

Additional symmetries can be realized if one uses graded Lie algebras instead of
Lie algebras. Graded Lie algebras are generated not only by commuting generators
(as ordinary Lie algebras) but also by anti-commuting generators. These "fermionic"
generators transform as spinors under the Lorentz group, thus "enlarging" the space-
time symmetry. The only graded Lie algebra consistent with relativistic field the-
ory, is supersymmetry. Supersymmetry in four dimensions, as proved by Haag, Lo-
puszanski and Sohnius in [2], includes the bosonic generators of the Poincaré group
(Jαβ , J̄α̇β̇, Pαβ̇), N fermionic generators Qaα and their conjugates Q̄a

α̇ and at most
1
2N (N − 1) complex central charges Zab = −Zba. The central charges are called
central because they commute with all generators in the algebra. Greek indices refer
to the spinor representation of the Lorentz group. Since all irreducible representa-
tions can be classified by two halfintegers (a, b), any quantity can be represented
by a quantity with 2a undotted and 2b dotted indices. The spinor representation
(1
2 , 0) is labeled by Greek indices ψα, the conjugate representation (0, 1

2) by dotted

12
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Greek indices ψ̄α̇, the vector representation (1
2 ,

1
2 ) by one dotted and one undotted

index V αβ̇ . We shall denote the combination of a dotted and undotted Greek index
by an underlined Latin index a ≡ (αα̇). The self-dual and anti-self-dual parts of
an antisymmetric tensor have two undotted, respectively, dotted indices. The Latin
index a runs from 1 to N . Brackets denote symmetrization without any factors. The
algebra is

{Qaα, Q̄
b
β̇
} = δb

aPαβ̇

{Qaα, Qbβ} = CαβZab

[Qaα, Pββ̇ ] = [Pαα̇, Pββ̇ ] = [J̄α̇β̇ , Qcγ ] = 0

[Jαβ , Qcγ ] =
1

2
iCγ(αQcβ)

[Jαβ , Pγγ̇ ] =
1

2
iCγ(αPβ)γ̇

[Jαβ , J
γδ ] = −1

2
iδ

(γ
(aJ

δ)
β)

[Jαβ , J̄α̇β̇] = [Zab, Zcd] = [Zab, Z̄
cd] = 0.

Here Cαβ is the Pauli matrix σ2. An internal symmetry can be added by adding
generators of the corresponding Lie algebra TA (A is the group index) and the com-
mutation relations

[TA, TB ] = ifC
ABTC

[TA, Pαα̇] = [TA, Jαβ ] = [TA, J̄α̇β̇] = 0

[TA, Zab] = 0

[TA, Qaα] = −tAabQbα

where fC
AB are the structure constants of the Lie algebra and the coefficients tAαβ

furnish a representation

[tA, tB ] = ifC
ABtC .

An automorphism of the algebra which mixes the various generators Qaα is called
R-symmetry.

2.1.2 Particle Representations

The particle content of supersymmetric representations can be analyzed in terms of
representations of the Poincaré group. As in the Poincaré group, P 2 is a Casimir
(it commutes with all the generators). Therefore, all representations can be char-
acterized by their mass. This implies further, that all states in a given irreducible
representation have the same mass.

Massive states, no central charge

In the rest frame the momentum operator can be written as

Pαα̇ =

(
P0 + P3 P1 − iP2

P1 + iP2 P0 − P3

)
,
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in the rest frame this means that it is proportional to the unit matrix Pαα̇ = −mδαα̇.
The fermionic generators act as creation/ annihilation operators (up to rescaling) 1

aaα =
i√
m
Qaα (aaα)

†

=
i√
m
Q̄aα̇.

The particle content can be constructed as usual from the Clifford vacuum. The
Clifford vacuum forms an irreducible representation of the Poincaré group and thus
has definite spin j. We have 2N anticommuting creation operators, which since they
are in the representation (0, 1

2), raise, resp., lower the spin by 1
2 . The total number

of states is 22N k, where k is the number of states in the Clifford vacuum.

Massless states, no central charges

The construction is analogous to the massive case. In a suitable Lorentz frame with
only p++̇ = P0 + P3 nonzero, we find that also {Qa−, Q̄

b
−̇
} = 0. If the anticom-

mutator of an operator with its conjugate vanishes, the operator itself must vanish
identically when acting on any states. Therefore we are left with only half of the cre-
ation/annihilation operators of the massless case, those related to Qa+. These lower
the helicity by 1

2 , so that if the helicity of the Clifford vacuum is λ, the helicities
of the states are λ, · · · , λ −N 1

2 . The total number of states is 2N k, where k is the
number of states in the Clifford vacuum.

Nonzero central charges

If there are nonzero central charges, it is convenient to change the basis, so that they
can be written as

Zab =




Z1ij 0 . . . 0
0 Z2ij . . . 0
...

...
. . .

...
0 0 . . . ZN

2
ij




where ZMij is an antisymmetric 2 × 2 matrix ZMij = ZM ǫ
ij , ǫij =

(
0 1
−1 0

)
. If N is

odd there is an extra column and row of zeroes. The ZM , M = 1, . . . ,N/2 are real
and nonnegative. After changing the index a, a = 1, . . . ,N for the indices (Mi),
M = 1, . . . ,N/2, i = 1, 2, the anticommutation relations of the fermionic generators
become (in the rest frame),

{QLi
α , Q̄

Mj

β̇
} = −mδijδLMσ0

αβ̇

{QMi
α , QLj

β } = Cαβǫ
ijδMLZM

{Q̄Mi
α̇ , Q̄Lj

β̇
} = −Cα̇β̇ǫ

ijδMLZM

1Due to conventions in superspace we have an extra sign for hermitian conjugation (ψα)† = −ψ̄α̇
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We can construct 2N creation/annihilation operators (σ0 is the identity matrix)

aM
α =

1√
2

(
QαM1 − Cαβσ

0βγ̇Q̄γ̇M2

)

(
aM

α

)†
=

1√
2

(
−Q̄α̇M1 − Cα̇β̇σ̄

0β̇γQγM2

)

bMα =
1√
2

(
QαM1 + Cαβσ

0βγ̇Q̄γ̇M2

)

(
bMα
)†

=
1√
2

(
−Q̄α̇M1 + Cα̇β̇σ̄

0β̇γQγM2

)
,

with nonzero anticommutators

{aL
α ,
(
aM

β

)†
} = δLM δαβ(m+ ZM )

{bLα ,
(
bMβ
)†
} = δLM δαβ(m− ZM ).

The anticommutator of an operator with its conjugate must be nonnegative, so since
the ZM ’s are nonnegative we get a lower bound on the masses

m ≥ ZM . (2.1)

If ZM < m for all M we have a set of 2N creation/annihilation operators, and the
particle content is the same as if there were no central charges. If the bound is satu-
rated for some ZM , i.e. ZM = m, the corresponding operators bα anticommute with
their adjoints and must be identically zero (this is analogous to the massless case). If
K central charges saturate the bound there are 2(N −K) + K creation/annihilation
operators in the theory. States for which the bound is saturated are called BPS
states in analogy to BPS monopoles in gauge theories.

2.1.3 Superfield Representations

Field representations can be conveniently described as fields in superspace, an ex-
tension of spacetime. We shall show here only the basic ideas for N = 1.
Spacetime can be viewed as the coset space (Poincaré group) mod (Lorentz group),
with the points in spacetime identified with the orbits that the Lorentz group sweeps
out in the Poincaré group. In a similar way global flat superspace can be defined as
(super-Poincaré group) mod (Lorentz group). Here it is necessary to add fermionic
coordinates to the bosonic coordinates x, these fermionic coordinates are taken to
be the anticommuting Grassmann variables θα, θ̄α̇. An element of superspace can be
parametrised using the exponential mapping

g(x, θ, θ̄) = ei(xαβ̇P
αβ̇

+θαQα+θ̄α̇,Q̄α̇).

where P and Q’s are abstract generators. The group structure tells us how the
generators act and allows us to represent these generators in terms of differential
operators.

Φ(x, θ, θ̄) = f(x) + θαϕα(x) + θ̄α̇ψ̄α̇(x) + θ2m(x) + θ̄2n(x)+

+ θαv
αβ̇(x)θ̄β̇ + θ2θ̄β̇λ̄(x)β̇ + θ̄2θβχ(x)β + θ2θ̄2d(x).
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From this we see that it contains 4 scalar fields f(x), m(x), n(x), d(x), 4 spinor fields
ϕ(x), ψ̄(x), λ̄(x), χ(x) and a vector field vαβ̇ . Alternative to Taylor expansions are
projections. We can define the components as the projections of the field and its
spinor derivatives on the subspace θ = θ̄ = 0. This is denoted by Φ|. Thus for the
previous example we have

f(x) = Φ|
ϕα(x) = DαΦ|
m(x) = D2Φ

∣∣ , etc..

However representations in terms of general superfields contain more fields than we
are interested in. By making a specific choice, e.g. by imposing constraints, we can
find superfields that contain physical fields that we are interested in as i.e. the scalar
field, gauge field, spinors.

Chiral superfield

Chiral superfields can be obtained by imposing D̄α̇Φ = 0. It contains two scalar
fields and a spinor field

φ(x) = Φ|
ψα(x) = DαΦ|
F (x) = D2Φ

∣∣ . (2.2)

Vector superfield

A vector superfield is a real scalar superfield V = V̄ . It can be shown that there exists
a gauge, the Wess-Zumino gauge, in which only certain components are nonzero . In
the Abelian case these are

λα = DαV |

Aαα̇ =
1

2
[D̄α̇,Dα]V

∣∣∣∣

D′ =
1

2
DαD̄2DαV

∣∣∣∣ . (2.3)

The vector field Aαα̇ is the gauge field, the field λα is a spinor and D′ is a scalar
field.
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Field strength multiplet

The field strength multiplet is a spinor superfield Wα which satisfies DαWα =
−D̄α̇W̄α̇. It contains a spinor field λα, a scalar D′ and a symmetric bispinor fαβ:

λα = Wα|

fαβ =
1

2
D(αWβ)

∣∣∣∣

D′ = −1

2
iDαWα

∣∣∣∣ . (2.4)

In the Abelian case it can be expressed through the vector field as Wα = iD̄2DαV .
Then the fαβ and its conjugate fα̇β̇ corrrespond to the self-dual and anti-self-dual

parts of the field strength of the gauge field vαβ̇ . This superfield is also called field
strength multiplet.

Non-Abelian gauge group

If the gauge group is non-Abelian it is more convenient to work in terms of the gauge
covariant derivatives ∇A = DA − iΓA with A = α, α̇, (αα̇). The field strengths FAB

are given by the (anti)-commutator of covariant derivatives

[∇A,∇B} = TC
AB∇C − iFAB , (2.5)

where TC
AB is the torsion and [} denotes either commutator or anticommutator. The

spinor superfield is part of the fieldstrength

Fα̇,ββ̇ = iCα̇β̇Wβ.

It is convenient to define the physical components of the chiral and spinor superfields
as in the Abelian case. They will take the same form case upon changing covariant
derivatives D,∂ for gauge covariant derivatives ∇ in (2.3).

N = 2 representations

N = 2 representations can be found as superfields on N = 2 superspace, with
two pairs of anticommuting coordinates θ1,θ2,θ̃1, θ̃2. The vector multiplet can be
decomposed with respect to θ̃ into two N = 1 multiplets: a scalar multiplet and a
spinor multiplet

Φ = W |θ̃=0

Wα = − ∇̃αW
∣∣∣
θ̃=0

. (2.6)

The minus sign on the second line is a matter of convention. It follows that the
matter field in Φ must be in the same representation of the gauge group as the gauge
fields, i.e. in the adjoint representation.
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2.2 N = 2 Super Yang-Mills theory

2.2.1 N = 2 Algebra

The N = 2 algebra has two pairs of fermionic superspace coordinates. The commu-
tations relations of the covariant derivatives are

{
∇α, ∇̄α̇

}
= i∇αα̇ {∇α, Qβ} = iCαβW̄

{Qα, Qα̇} = i∇αα̇

{
∇̄α̇, Q̄β̇

}
= iCα̇β̇W, (2.7)

all the other (anti)commutators are zero. Here we denote as Qa the covariant deriva-
tive with respect to θ̃, Qa = −i∇̃α, in order to avoid too many ∇’s. The superfield
W is the central charge of the algebra Z, W = −iZ12 = −iZ. We can get more
relations by using the Jacobi identity, e.g. the following relation for the superfield
W

Q2W = ∇̄2W̄ .

Thus W depends only on half of the superspace and by analogy with N = 1 is called
N = 2 chiral.The N = 2 chiral superfield is a vector multiplet and can thus be
written in terms of an N = 1 scalar superfield Φ and an N = 1 chiral superfield Wγ

as in (2.6).
The remaining N = 1 algebra without θ̃ is

{
∇a, ∇̄α̇

}
= i∇αα̇

[
∇α,∇ββ̇

]
= CαβW̄β̇

{∇α,∇β} = 0
[
∇̄α,∇ββ̇

]
= Cα̇β̇Wβ

{
∇̄α̇, ∇̄β̇

}
= 0

[
∇αα̇,∇ββ̇

]
= Cα̇β̇∇βWα + Cαβ∇β̇Wα̇, (2.8)

which using (2.5) gives us the field strengths . Actually we should distinguish between
the field strength multiplet as a superfield and the usual physical field strength which
is its θ independent part, but it will be clear from context which one we mean. We
note here that from (2.8) and (2.5) one can find the usual relation between the field
strength (more precisely its θ-independent part) and the gauge field

Fab

∣∣ = ∂aAb − ∂bAa − i[Aa, Ab].

From (2.8), we see that the field strength can be expressed in terms of the bispinor
fαβ as

Fαα̇,ββ̇ = Cα̇β̇fαβ + Cαβfα̇β̇.

2.2.2 R-Symmetry

SU(2) R-Symmetry

The N = 2 algebra admits an SU(2) R-symmetry, i.e. the N = 2 superalgebra is
invariant under an SU(2) transformation under which the fermionic coordinates θα,
θ̃α form a doublet

(
θα

θ̃α

)
→ U

(
θα

θ̃α

)
, U ∈ SU(2).



CHAPTER 2. SUPERSYMMETRY 19

The central charge is invariant, from which we can find the transformation properties
of the physical fields given by (2.6), (2.2), (2.4). It turns out that the scalar φ and
the bispinor fαβ transform trivially, the spinors ψα, −λα form a doublet and the
fields F , D have more complicated transformation properties. It will be shown that
these two fields are only auxiliary fields with no physical significance, therefore we
do not have to worry too much about them.

U(1)J R-Symmetry

The theory admits also two U(1) symmetries. One of them, denoted as U(1)J is
actually part of the SU(2) R-symmetry. It transforms the fermionic generators and
leaves the chiral N = 2 field W invariant

θα → θ′α = eiγθα

θ̃α → θ̃′α = e−iγ θ̃α

W (θ, θ̃) →W ′(θ′, θ̃′) = W (θ, θ̃).

The spinorial physical fields transform while the scalar and the bispinor remain
invariant

ψα → ψ′
α = e−iγψα φ→ φ′ = φ

λα → λ′α = eiγλα fαβ → f ′αβ = fαβ.

Although both the path integral measure for ψα and for λα are anomalous, these
anomalies differ only by a sign and therefore cancel each other. The difference in
sign comes from the ψα and λα have opposite charges. As a result this is an exact
quantum symmetry.

U(1)R R-Symmetry

The other U(1) symmetry denoted as U(1)R, transforms the fermionic coordinates θ
and θ̃ with the same chargeand transforms the chiral superfield with charge 2,

θα → θ′α = eiγθα

θ̃α → θ̃′α = eiγ θ̃α

W (θ, θ̃) →W ′(θ′, θ̃′) = e2iγW (θ, θ̃) = e2iγW (e−iγθ′α, e
−iγ θ̃′α).

The physical components transform

φ→ φ′ = e2iγφ

ψα → ψ′
α = eiγψα

λα → λ′α = eiγλα

fαβ → f ′αβ = fαβ.
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At the quantum level this symmetry is broken by an anomaly. In this case the
transformation of both spinor fields is the same. Therefore the anomalies induced by
ψα and λα are the same and do not cancel but add up to an anomalous transformation
of the path integral measure of the spinors

DψDψ̄DλDλ̄→ DψDψ̄DλDλ̄ei8να

with ν being the winding number, which will be defined in the context of monopoles.

2.2.3 Action

Supersymmetric actions are conveniently expressed in superspace. We can define an
integral over a Grassmann variable as a linear map that acts on constants and θ as

∫
dθ a = 0

∫
dθ θ = 1,

i.e. it returns the coefficient in front of the θ component. This can of course be
generalized to higher dimensional integrals of several Grassmann variables. The
integral

∫
d2θ2 is equivalent to taking the second derivative ∇2 and then projecting

onto θ = 0 up to total derivatives, i.e.
∫

d2θ2g(x, θ) = ∇2g(x, θ)
∣∣
θ=0

+ total spacetime derivatives.

The supersymmetric action is written in terms of an integral in superspace

S =

∫
d4x

∫
d2θ2d2θ̄2d2θ̃2d2 ¯̃

θ2L(x, θ, θ̄, θ̃,
¯̃
θ).

From this we can find the actions for the physical fields. The most general N = 2
action for a chiral superfield with no more than two spacetime derivatives is given
by a holomorphic function F called the prepotential

S = Im
∫

d4xd2 θd2θ̃F(W ). (2.9)

The action is invariant under U(1)J since θ and θ̃ transform with opposite charge
and the central charge is invariant. It is also invariant under SU(2)R because the
combination θ2θ̃2 is invariant and the central charge does not transform either. It is
however in general not invariant under U(1)R, since it transforms

∫
d2θd2θ̃F(W (θ, θ̃)) →

∫
d2θe−2iαd2θ̃e−2iαF(e2iαW (θ, θ̃))

The only case when this is invariant is for F(W ) = W 2, which corresponds to the
classical action.
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The action of the component fields

We shall show here in some detail how to obtain the usual action for the component
fields.
First we will reduce the N = 2 action to N = 1 fields. Denoting the derivatives of
F as FA = ∂F

∂W A , we have

S =

∫
d4xd2θd2θ̃F =

∫
d4xd2θ Q2F

∣∣
θ̃=0

=

=

∫
d4xd2θ FAQ

2WA +
1

2
FABQ

αWAQαW
B

∣∣∣∣
θ̃=0

=

=

∫
d4x

{∫
d4θFAΦ̄A +

∫
d2θ

1

2
FABW

αAWB
α

}

where we have used (2.6), (2.7) and (2.8).Reducing this further, we get for the first
term

S1 =

∫
d4x ∇2∇̄2

(
FAΦ̄A

)∣∣
θ=0

=

∫
d4x ∇2

(
FA∇̄2Φ̄A

)∣∣
θ=0

=

=

∫
d4x

1

2
FABC∇γΦC∇γΦB∇̄2Φ̄A

∣∣∣∣
θ=0

+ FAB∇2ΦB∇̄2Φ̄A
∣∣
θ=0

+

+ FAB∇γΦB∇γ∇̄2Φ̄A
∣∣
θ=0

+ FA∇2∇̄2Φ̄A
∣∣
θ=0

=

=

∫
d4x

1

2
FABCψ

γCψB
γ F

†A + FABF
BF †A+

+ FABψ
γB
(
i∇α̇

γ ψ̄
A
α̇ + i[λγ , φ̄]A

)
+ FA

(
[D, φ̄]A + i{λ̄β̇ , ψ̄

β̇}A + �φ̄A
)
, (2.10)

where we used the algebra (2.8). The second term is

S2 =

∫
d4x ∇2

(
1

2
FABW

αAWB
α

)∣∣∣∣
θ=0

=

=

∫
d4x

1

4
FABCD∇γφD∇γφ

CWαAWB
α

∣∣∣∣
θ=0

+

+
1

2
FABC∇2φCWαAWA

α

∣∣∣∣
θ=0

− FABC∇γφCWαA∇γW
B
α

∣∣
θ=0

−

− 1

2
FAB∇γWAα∇γW

B
α

∣∣∣∣
θ=0

+ FABW
Aα∇2WBα

∣∣
θ=0

=

=

∫
d4x

1

4
FABCDψ

γDψC
γ λ

AαλB
α +

1

2
FABCF

CλαAλB
α−

−FABCψ
γCλαA(fγαB + iDBCγα) + FABλ

Aα∇α̇
αλ̄

B
α̇−

− 1

2
FAB(fγαA − iDACγα)(fB

γα − iDBCγα). (2.11)

We can integrate the term with � = 1
2∇αα̇∇αα̇ per partes to get the usual kinetic

term
∫

d4xFA�φ̄A = −
∫

d4x
1

2
FAB∇αα̇φB∇αα̇φ̄

A. (2.12)
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We can also find a more familiar form for the kinetic term of the gauge field. From
(2.9) we see that

Fαα̇,ββ̇Fαα̇,ββ̇ = 2fαβfαβ + 2f α̇β̇fα̇β̇ = 4Re (fαβfαβ)

F abǫabcdF
cd = (Cαβf α̇β̇ + C α̇β̇fαβ)(Cγδf γ̇δ̇ + C γ̇δ̇fγδ)i

(CαδCβγCα̇β̇Cγ̇δ̇ − CαβCγδCα̇δ̇Cβ̇γ̇) =

= i(2fαβ2fγδCαδCβγ − 2f α̇β̇f γ̇δ̇Cα̇δ̇Cβ̇γ̇) =

= −8 Im (fαβfαβ),

here we used fαβ† = f α̇β̇. The dual of the field strength tensor is defined as usual
∗Fab = 1/2ǫabcdF

cd with ǫ0123 = 1. The term fαβfαβ can thus be written in terms
of the field strength and its dual

fαβAfB
αβ =

1

4

(
F abAFabB − iF abA ∗F b

ab

)
,

The fields F and D do not appear with derivatives. Using their field equations, which
are only algebraic, we can eliminate F and D from the action. Thus these fields are
not physical but only auxiliary.

Classical Action

The "classical" action corresponds to the choice of prepotential

F =
1

4π
τ
∑

A

WAWA, (2.13)

where τ is a complex gauge coupling, given by the usual coupling constant g and the
theta angle θ

τ =
4πi

g2
+

θ

2π
. (2.14)

Thus the terms with more than two derivatives drop out, FAB = τδAB . Inserting
everything in (2.10), (2.11) we find

S =

∫
d4x− 1

4g2
F abAFabA

− 1

g2
∇aφA∇aφA+

+
i

g2
λαA∇α̇

αλ̄
A
α̇ +

i

g2
ψαA∇α̇

αψ̄
A
α̇−

− 1

g2
fABC(φ̄AψBαλC

α + φAψ̄α̇BλC
α̇ )−

− FAF+A +DADA +DA[φ̄, φA]−

−
∫

d4x
θ

32π2
FAab ∗ FA

ab. (2.15)

The terms on the first two lines are the usual kinetic terms of a gauge field, scalar field
and spinor field. The terms on the third line are interaction terms for the scalar and
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the spinors. The terms on the next line are called F-term and D-term, respectively,
and form a potential for the scalar field. Substituting from their equations of motion
FA = 0 and DA = 1/2[φ̄, φ]A we find the positive definite potential

V =
1

2g2
[φ, φ̄]A[φ, φ̄]A.

The last line in (2.15) is in fact a surface term and can be written in terms of the
second Chern number c2 (also called topological charge or instanton number) as

θ

32π2

∑

A

∫
d4xF abAF̃A

ab = θc2 (2.16)

where c2, an integer, is a topological invariant characterizing the gauge bundle (for
more on a geometric description of YM theories see [16])

c2 =
1

8π2
Tr
∫

F ∧ F .

The equations of motion for the physical fields are

−1

2
∇a∇aφ =

1

2
[φ, [φ, φ̄]] + i{ψγ , λγ}

i∇γ̇
αψ

α = −[λ̄γ̇ , φ]

i∇γ̇
αλ

α = −[ψ̄γ̇ , φ]

∇α̇
βf

αβ =
1

2
∇ββ̇F

αα̇,ββ̇ =
1

2

(
[φ,∇αα̇φ̄] + [φ̄,∇αα̇φ]

)
+ {ψ̄α̇, ψα} + {λ̄α̇, λα}. (2.17)



Chapter 3

Classical Monopoles

In this chapter we shall discuss BPS monopoles. For details from the field theoretic
view see [17] or [18], for a mathematical viewpoint see [16]. Magnetic monopoles are
topologically nontrivial field configurations. Geometrically speaking, we model the
Yang-Mills field (the generalization of the electromagnetic field) as a connection on
a principal bundle over Minkowski space and by “topologically nontrivial” we mean a
nontrivial bundle. Since this material is usually covered without the supersymmetric
background, we will change the notation of four-vectors from the dotted-undotted
pair (αα̇) used in supersymmetry to the usual Greek index µ, and work from now
on in the usual framework of fourvectors in QFT.

Dirac monopole

We shall illustrate some ideas on the simplest monopole, the Dirac monopole in
electromagnetism. The Dirac monopole [3] is the magnetic equivalent of a point
charge, i.e. it has no electric field and a magnetic field

~B =
b

r2
, (3.1)

with b a real number called the magnetic charge. In terms of the U(1) bundle over
the sphere S2, this cannot be described by only one global formula for A but we
must use (at least) two local descriptions. Conventionally these are defined on the
northern, resp. southern hemisphere by

AN = b(1 − cos θ)dθ

AS = b(1 + cos θ)dθ.

This solution is called the Wu-Yang monopole [4]. The first Chern number c1 of this
bundle is the integral of the cohomology class of the curvature (field strength) F over
the sphere

c1 =
1

2π

∫

S2

F = 2b. (3.2)

It can be shown, that the Chern number is an integer. From this we find the Dirac
quantization condition, which shows that the magnetic charge is quantized

b =
n

2
, n ∈ Z. (3.3)

24
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In general if a theory has a compact U(1) gauge group, it has magnetic monopoles
with quantized magnetic charges.

3.1 SU(2) Monopoles

We shall now turn to monopoles in Yang-Mills-Higgs theories and we shall start with
the simplest gauge group - SU(2). These can be derived from supersymmetric Yang-
Mills-Higgs theories by setting the fermionic fields ψ and λ to zero. The results in
this section hold also for arbitrary potential, not only the special, supersymmetric
case [φ, φ̄]2.

3.1.1 SU(2) Yang-Mills-Higgs Action

We will separate the temporal and spatial parts of the fields, the Latin indices
i, j, k run over the spatial coordinates 1, 2, 3). The action with all fermionic terms
dropped and written in terms of the electric and magnetic field, EA

i = FA
0i and

BA
i = 1

2ǫijkF
jkA is

S =

∫
d4x

[
− 1

2g2
(BA

i B
A
i − EA

i E
A
i ) +

θ

16π2
EA

i B
A
i −

− 1

g2
∇µφA∇µφ̄

A − 1

2g2
([φ, φ̄]A[φ, φ̄]A)

]
.

We can define the conjugate momenta

ΠA =
δS

δ∂0φA
= − 1

g2
∇0φ̄A

ΠiA =
δS

δ∂0AA
i

=
1

g2
EA

i − θ

16π2
BA

i .

Then the Hamiltonian is

H = ΠiA∂0A
A
i + ΠA∂0φ

A + Π̄A∂0φ̄
A − L =

=
1

2g2
(EA

i E
A
i +BA

i B
A
i ) +

1

g2
∇0φ

A∇0φ̄
A +

1

g2
∇iφ

A∇iφ̄
A+

+
1

2g2
([φ, φ̄])2 +AA

0 (−∇iΠ
A
i +

1

g2
fABC(∇0φ̄

BφC + ∇0φ
Bφ̄C))

where we rewrote everything in terms of covariant objects and then integrated per
partes the term involving ∇iA

A
0 . Since the momentum conjugate to A0 is zero, we

must impose that this holds for all times, i.e. we must impose that the Poisson
bracket of A0 and the Hamiltonian vanishes. This gives rise to the Gauss constraint

∇iΠ
A
i =

1

g2
fABC(∇0φ̄

BφC + ∇0φ
Bφ̄C)).

We will work in the gauge ∇0φ
A = 0, then the Gauss constraint becomes (taking

into account the Bianchi identity ∇iB
A
i = 0)

∇iΠ
A
i = ∇iE

A
i .
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The vacuum is the state with zero energy; it must satisfy the equations

EA
i = BA

i = 0 ∇iφ
A = 0 [φ, φ̄] = 0. (3.4)

The vacuum expectation value of φ can be written as
〈
φA
〉

= aeA with eA being
a unit vector in the algebra. The condition on φ determines a variety of gauge
equivalent configurations called the Higgs vacuum. In our example with SU(2) the
Higgs vacuum is given by φ2 = a2, so the values of the Higgs vacuum form a sphere in
the space all configurations.This breaks the SU(2) down to U(1), which is generated
by T = TAeA and corresponds to rotations of φ with rotation axes along 〈φ〉. The
gauge field separates into two components: the longitudinal component A‖

µ which
is parallel (in the Lie algebra) to 〈φ〉 remains massless and is the U(1) gauge field,
and the two perpendicular components which form a selfinteracting complex field
A±

µ = A⊥
µ ± iÃ⊥

µ with charge ±1 and mass ag.
Monopoles are finite energy configurations so they must approach the vacuum at
infinity. The scalar field induces a map from the sphere at infinity S2

∞ to the space
of Higgs vacua, which is also a sphere S2

a but with radius a. All maps from S2 to a
target manifold M can be characterized by their homotopy class. For M = S2

a this
is Z, so the scalar field can be characterized by an integer. This integer is called
winding number, and represents how many times S2

∞ wraps around S2
a

1.
The winding number is directly related to the magnetic charge of a given solution.It
follows from (3.4), that the perpendicular component of the gauge field must be

A⊥
µ = − i

a2
[∂µφ, φ].

The longitudinal component of the field strength is

F ‖
µν = ∂µA

‖
ν − ∂νA

‖
µ − i

a3
(φA[∂νφ, ∂µφ]A)

Now compute the magnetic charge of the U(1) field, which is the surface integral
of the magnetic field Bi = 1

2ǫ
ijkF

‖
jk divided by 4π (the 4π are added so that the

definition agrees with (3.1)),

b =
1

4π

∫

S2
∞

B
‖
i dSi =

=
1

4π

∫

S2
∞

(
1

2
ǫijk(∂jA

‖
κ − ∂kA

‖
j) −

i

2a3
ǫijk(φA[∂kφ, ∂jφ]A

)
dSi =

=
1

4π

∫

S2
∞

(
(rotA)i −

1

2a3
ǫijkǫABCφA∂jφ

B∂kφ
C

)
dSi.

The part involving the rotation vanishes by Stokes’ theorem since S2
∞ has no bound-

ary. For the second term, note that the volume form on the Higgs vacuum is

ω̃ =
1

2a
ǫABCφAdφB ∧ dφC

1Definition: Let φ : M → V be a smooth map from one closed oriented manifold (ie. compact,
without boundary) to another of the same dimension n. Let ω be a normalized n-form on V, ie.
R

V
ω = 1. The winding number of φ is the integer ν =

R

M
φ∗ω.
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and the normalized n-form ω = ω̃/(4πa2). The pullback of ω is then

φ∗ω =
1

8πa3
ǫABCφA ∂φ

B

∂xj

∂φC

∂xk
dxj ∧ dxk

with dxj ∧ dxk = ǫijkdSi. This gives the second term, hence

b = −ν,

where ν is the winding number.

3.1.2 BPS Monopoles

The Hamiltonian for the static configuration can be split into two parts; one is
positive definite and the other is a surface term

H =
1

2g2

∫
d3x

(
BA

i B
A
i + EA

i E
A
i + 2∇iφ

A∇A
i φ̄

A + V (φ)
)

=

=
1

2g2

∫
dx3

∣∣∣BA
i + iEA

i +
√

2eiα∇iφ
A
∣∣∣
2
+ V (φ)−

−
√

2

g2

∫

S2
∞

dSi

(
BA

i Re (eiαφA) + EA
i Im eiαφA)

)
,

V (φ) is the potential for the scalar field and eiα is a phase, that has been included
to get the most general form possible. We have used ∇iB

A
i = 0 and ∇iE

A
i = 0 and

written the integral as a surface term. The first term is positive definite (α is an
arbitrary parameter), it is zero if V (φ) = 0 and

BA
i + iEA

i +
√

2eiα∇iφ
A = 0. (3.5)

This is called the Bogomol’nyi equation and solutions to it are called BPS (Bogomol’nyi-
Prasad-Sommerfeld) monopoles. It can be shown that any configuration which solves
the BPS equation also solves the equations of motion. The second term is a surface
term and constitutes a lower bound to the energy. In terms of the magnetic charge
b and electric charge q (of the residual U(1))

E ≥
√

2

g2
(b cosα− q sinα).

We can define the magnetic and electric quantum numbers nm and ne by

nmaD = − 1

4π

∫

S2
∞

dSiτB
‖
i a nea = −

∫

S2
∞

dSiΠ
‖
i a,

with aD = τa. Then the surface term can be written as

H2 =
√

2 Im eiα(nmaD + nea).

In fact, the central charge of this theory can be shown to be [19]

Z = nmaD + nea, (3.6)



CHAPTER 3. CLASSICAL MONOPOLES 28

so in order to reproduce the algebraic energy bound (2.1) we must set α to α =
π/2 − argZ.
Comparing the two expressions for H2 we see also that

b = −4πnm q = −ne + nm
θ

2π
,

i.e. if the theta angle is nonzero, a magnetic charge has also electric charge. This is
also known as the Witten effect.

3.1.3 t’Hooft-Polyakov Monopoles

The ’t Hooft-Polyakov monopole [8], [20] is an exact, static solution to the Bogo-
mol’nyi equation (3.5). It can be found by making a particular ansatz, for which we
shall give some motivation.
The theory has two SO(3) symmetries. One comes from the spatial part of the
Lorentz group and one from the SU(2) gauge group which is a covering of SO(3)
π : SU(2) → SO(3). The solution can be neither rotationally invariant since then it
would have zero topological charge nor gauge invariant. However, we can combine
the rotational symmetry SO(3)R and the gauge symmetry SU(2)G, and require that
the solution be invariant under the diagonal subgroup of SO(3)R ×SO(3)G. We can
also add a Z2 symmetry which consists of parity plus sign change of the Higgs field
and the temporal component of the connection A0.
The action of SO(3)R on the position vector ~x is ordinary matrix multiplication g~x,
the action of SO(3)G on the scalar and vector field is the adjoint action of SU(2)
Ad(g)(φ). The ’t Hooft-Polyakov ansatz thus requires the fields to be invariant under
the following transformations 2

diag(SO(3)R × π(SU(2)G)) ∋ g :

Aj(~x) → Aj(g~x) = Ad(g)(Ai(~x))
(
g−1
)i
j

A0(~x) → A0(g~x) = Ad(g)(A0(~x))

φ(~x) → φ(g~x) = Ad(g)(φ(~x))

Z2 :

Aj(~x) → Aj(−~x) = −Aj(~x)

A0(~x) → A0(−~x) = −A0(~x)

φ(~x) → φ(−~x) = −φ(~x).

Expanding the potential A in a basis of the algebra we have for the coefficients

AA
j (~x)TA = gAA

i (g−1~x)TAg
−1
(
g−1
)i

j
=

= AA
i (g−1~x)

(
g−1
) C

A

(
g−1
)i

j
TC

2Technically, the map π : SU(2) → SO(3) is 2:1 and we should check whether the transformation
is well defined. We can choose the map π so that the pair g, −g always gets mapped on the same
element [g]. In the transformation itself there are always two elements from SU(2) g and g−1, the
other g, if present, is actually the image [g]. Therefore, the minus signs cancel.
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where we used the fact that the relation gTAg
−1 =

(
g−1
) B

A
TB holds for the su(2)

generators TA . We see that the coefficients AA
i transform according to the 3 ⊗ 3

representation:
AA

i (~x) = AB
j (g−1~x)

(
g−1
)j

i

(
g−1
) A

B
.

Thus AA
i must be from 6⊕ 3 and can be written in terms of two unknown functions

(r2 =
∑

(xi)2)
AA

i = α(r)Ai + β(r)ǫAikx
k.

The function αA
i is even under parity and the β term is odd. Thus imposing the Z2

we must set α to zero.
For the Higgs field written in terms of the basis φ = φATA, we have the condition

φA(~x)TA = gφA(g−1~x)TAg
−1 = φA(g−1~x)

(
g−1
)
A
TB .

Thus the coefficients φA transform in the 3 representation

φA(~x) =
(
g−1
) A

B
φB(g−1~x)

and the most general form of this is

φA(~x) = γ(r)xA.

This has also the correct transformation property with respect to Z2.
Starting with this Ansatz

φA = eAφ(r) AA
i = ǫAije

j

(
1 − L(r)

r

)
AA

0 = eAb(r) (3.7)

where r =
√
xixi is the usual distance from the origin and eA = xA/r is a unit radial

vector, we get the electric and magnetic fields

BA
i = eie

AL
2 − 1

r2
+ PA

i

L,r

r
(3.8)

EA
i = −eie

Ab,r − PA
i

bL

r
(3.9)

with the projector
PA

i = δA
i − eie

A. (3.10)

The components proportional to eAei, resp., to PA
i are called Abelian, resp., non-

Abelian, since eie
A projects on the Abelian U(1).

The ansatz is perhaps more intuitive in spherical coordinates: at each point in space
we choose the basis vectors of the Lie algebra TR, TΘ, TΦ to be parallel to the (R3)
basis vectors er, eθ, eϕ, resp.

TR = cosϕ sin ϑT1 + sinϕ sinϑT2 + cosϑT3

TΘ = cosϕ cos ϑT1 + sinϕ cos ϑT2 − sinϑT3

TΦ = − sinϕT1 + cosϕT2.
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This implies that the Lie algebra basis vectors depend on the spherical coordinates
in space and we thus have a spin connection.
In this basis, we see that the nonzero components of the scalar and gauge field are

φR = φ AΘ
ϕ = −AΦ

ϑ =
1 − L

r
AR

0 = b

and

BR
r =

L2 − 1

r
ER

r = −b,r (Abelian components)

BΘ
ϑ = BΦ

ϕ =
L,r

r
EΘ

ϑ = EΦ
ϕ = −bL

r
(non-Abelian components).

Calculating also the covariant derivative of φ, we find

∇φ = φ,rT
Rdr + φLTΘdϑ+ φL sin θTΦdϕ.

Inserting in the Bogomol’nyi equation (3.5) we get two independent equations, one
for the Abelian component and one for the non-Abelian component

√
2eiαφr =

1 − L2

r2
+ ibr

√
2eiαφ = − d

dr
lnL+ ib. (3.11)

Combining these, we get a second order differential equation for L

Lrr

L
− (Lr)

2

L2
=
L2 − 1

r2
(3.12)

which is solved by
L =

κr

sinh[κ(r + δ)]
(3.13)

with integration constants δ and κ. The constant κ is given by the long range
behavior of the Higgs field. Inserting

d lnL

dr
=

1

r
− κ

tanh[κ(r + δ)]

in the Bogomol’nyi equation (3.5) and taking the r → ∞ limit, we find that

κ = Re (
√

2eiαa).

If we require the potentials AA
i to be finite everywhere we get the condition L → 1

for r → 0. Then the parameter δ must be chosen to be zero. The winding number
of this solution is −1 and the magnetic charge therefore 4π.

3.2 General Gauge Group Monopoles

The derivation of the Bogomol’nyi equation which was presented in subsections 3.1.1
and 3.1.2 does not depend on the fact that we chose SU(2) as the gauge group. The
details of the Higgs vacuum and the classification by using winding numbers is, of
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course, only valid for SU(2). Apart from that, all the other algebraic steps can be
done for general groups and thus equation (3.5) holds for any gauge group. We shall
show how the t’Hooft Polyakov monopole can be used to construct monopoles of
unit charge for general groups, [21].
The calculations in this section are simpler in the rescaled basis defined in ap-
pendix C.

The choice of simple roots depends on the asymptotic value of the scalar field
Φ0. We can choose this to lie in the Cartan subalgebra and define a vector in the
algebra ~h (the equivalent of the value a for SU(2)) by

Φ = ~h ~H. (3.14)

Now we require that the simple roots all have nonnegative inner products with ~h.
If there are no roots orthogonal to ~h, there is a unique choice for the simple roots
and the symmetry breaking is maximal to U(1)r. If there are k orthogonal roots,
these form a sublattice which is the rootlattice of a semisimple subalgebra K. The
symmetry breaking is then U(1)r−k ×K. The choice of roots is now ambiguous, with
the various possibilities related by elements of the Weyl group of K. We can further
require the asymptotic magnetic field to lie in the Cartan algebra and be of the form

Bi =
r̂i

r2
~g ~H. (3.15)

It has been shown [22] that ~g must fulfill the quantization condition

~g =
∑

a

na
~β∗a +

∑

j

qj~γ
∗
j (3.16)

with ~β∗ the dual root of ~β, ~β∗ = ~β/~β2 and na, qj integers. The na are uniquely
determined, gauge invariant topological invariants, the magnetic quantum numbers.
For maximal symmetry breaking there is a fundamental monopole corresponding
to each simple root and for each composite root there is a multimonopole solution
consisting of those monopoles, that correspond to roots forming the composite root.
The monopole associated to the root ~β can be obtained as follows. First we can
define an su(2)β subalgebra associated to the root

t1 =
1√
2~β2

(Eα + E−α)

t2 = − i√
2~β2

(Eα − E−α)

t3 = ~β∗ ~H. (3.17)

The Cartan subalgebra separates into a component lying in this su(2) generated by
t3 and an complementary component. This component can be chosen in terms of the



CHAPTER 3. CLASSICAL MONOPOLES 32

expectation value as t⊥ =
(
~h− ~h · ~β∗~β

)
· ~H. The t’Hooft-Polyakov monopole (3.7),

(3.13) can be embedded in SU(2)β

Aµ =

3∑

s=1

As
µt

s

Φ =

3∑

s=1

φr̂sts + (~h− ~h · ~β~β∗) · ~H, (3.18)

with κ = Re
(
eiα~h~β

)
. This is a solution to the Bogomol’nyi equation and carries

the charge na, which is the coefficient of the dual root in terms of the dual simple
roots β∗ =

∑
a naβ

∗
a .

The electric and magnetic fields and the covariant derivative of the scalar field lie in
su(2)β and have the same form as in SU(2) with eA exchanged for ts:

Bs
i =

L,r

r
(δis − r̂ir̂s) +

L2 − 1

r2
r̂ir̂s (3.19)

Es
i = −b,rr̂ir̂s +

bL

r
(δis − r̂ir̂s) (3.20)

∇iΦ
s =

φL

r
(δis − r̂ir̂s) + φ,r r̂ir̂s, (3.21)

with L, b and φ the same as for SU(2).



Chapter 4

Quantum Monopoles

Two papers by Seiberg and Witten [10, 11] started a large amount of work done in
the field of quantum monopoles. In these papers, they found the exact form of the
effective action for N = 2 supersymmetric Yang-Mills with gauge group SU(2) both
with and without matter. Their results were later generalized to other gauge groups
by [23–27]. There exist some very good reviews on this topic, see e.g. [28], [29].
The work was later combined with BPS monopoles, [30].

4.1 Seiberg-Witten Theory

As has been mentioned before, N = 2 theories of gauge fields have a very particular
form: the action is given by one holomorphic function. Furthermore, as a conse-
quence of supersymmetry, corrections to this superpotential occur only at one loop
level. Thus we have more control over the quantum corrections than in N = 1 theo-
ries, where not all quantum corrections are restricted to one loop level, but we have
a non-trivial beta function, unlike N = 4 where the beta function simply vanishes.
As for the choice of gauge group, it is natural to start with the simplest non-Abelian
group SU(2).
Quantum corrections are encoded in the effective action. In this case we look for a
Wilsonian effective action which could in principle be obtained by integrating out
fluctuations above some scale.
This effective action will depend on the symmetry breaking. As mentioned below
(3.4), we can choose the vacuum expectation value in the form 〈φ〉 = aeATA with
eA a unit vector. This breaks SU(2) to U(1). Excitations associated with this U(1),
i.e. parallel to eA in the Lie algebra, remain massless, the others acquire a mass ag.
A gauge transformation from the Weyl group changes the sign a → −a , so instead
we will use the gauge invariant object u = Tr φ2 which is classically u = 1

2a
2. At

u = 0 we expect classically a singularity since the SU(2) symmetry is restored and
the W boson becomes massless. In the quantum picture we expect a singularity as
usual when fields that are integrated out in the Wilsonian action become massless.It
is known from supersymmetry that the effective action receives both perturbative

33



CHAPTER 4. QUANTUM MONOPOLES 34

and non-perturbative corrections and for a U(1) field must be of the form [31]

F =
1

2
τ0W

2 +
i

2π
W 2 log

[
W 2

Λ2

]
+

1

2πi
W 2

∞∑

l=1

cl

(
Λ

W

)4l

(4.1)

where Λ is a dynamically generated scale, τ0 is the bare coupling, the middle term is
the one-loop correction and the last term is the instanton term. From expansions of
the action (2.10),(2.11) we know that the second derivative of F can be interpreted
as the effective coupling τ . Obviously, due to the logarithm the effective coupling
will not be single valued. This can also be regarded also from a different point of
view. From the kinetic term for the scalar field in (2.12), we see that this is a sigma
model and thus Imτ is also the metric on the moduli space. So this requires Imτ to
be positive everywhere. Now, Imτ is a harmonic function, i.e. ∂∂̄Imτ = 0 because
τ(u) is a holomorphic function of the modulus u. A theorem from complex analysis
states that if a function that is harmonic on a connected open set, has a minimum,
it is constant. Thus we see that it can be defined only locally.
Seiberg and Witten proposed that the quantum moduli space should have two sin-
gularities at the points u = ±Λ2 and the singularity at infinity. The motivation for
this is the following. There is a Z2 symmetry acting on the moduli space as u→ −u.
This comes from the U(1)R defined in section 2.2.2, which is broken by the one-loop
term and the instanton terms to Z8, as can be seen from the following. As shown
in section 2.2.2 the prepotential must transform as F → e4iαF for the action to be
invariant. The instanton term transforms

W 2
∞∑

l=1

cl

(
Λ

W

)4l

→ e4iαW 2
∞∑

l=1

cl

(
Λ

W

)4l

e−8liα

so the action is invariant for exp(−8ilα) = 1 for any l. But this means that α must
be 2π

8 k, which is Z8. The one-loop term transforms

i

2π
W 2 log

W 2

Λ2
→ i

2π
e4iαW 2 log

W 2

Λ
− 2α

π
W 2e4iα,

but the second term changes only Re τ (effectively the θ angle transforms as θ →
θ−8α) which is the coefficient for the instanton number (2.14), (2.16). So the action
gets changed by 8αc2 where c2 is the instanton number. In a path integral we have
exp(iS), so a shift by a multiple of 2π doesn’t change the physics. But this is exactly
the requirement that α = 2π

8 k. This Z8 acts on u = Tr φ2 as u → u ei4α = u ei4 2π
8

k,
which is (for odd k) u → −u. This symmetry must also be present in the structure
of the moduli space. The only possibility to have only one singularity( plus the one
at infinity) would be at u = 0. But then the relations for a, aD and τ would be valid
globally and we saw from the analysis of τ that this is not what we want. The second
simplest choice is to have two singularities and one singularity at infinity, which turns
out to be the right one. In fact, it can be shown that there is no solution for any other
arrangement of singularities [32]. Seiberg and Witten postulated that the physical
interpretation of these singularities is that at these points certain excitations (dyons)
become massless.
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Their idea was to study the singularities by means of monodromies. Monodromies
describe how a function changes when we loop around a singularity (or branch point).
The rigorous definition 1 may seem a little complicated but a well-known example
of this is the behavior of the log-function in the complex plane when we loop around
the origin log z → log z + 2πi. As such, monodromies arise frequently in complex
analysis and analytic continuation.
Seiberg and Witten defined a second scalar field as the derivative of the prepotential
aD = ∂F/∂a, which gives classically aD = τa. In the semi-classical region, close to
infinity, we see that a and aD are given by

aD = τ0a+
i

2π
2a log

a2

Λ
+

2i

π
a+ instanton terms

a =
√

2u (4.2)

Performing a loop in the u plane u→ ei2πu we find that

a→ −a
aD → −aD + 2a.

This is a monodromy transformation
(
aD(u)
a(u)

)
→M

(
aD(u)
a(u)

)

with monodromy matrix2 M∞

M∞ =

(
−1 2
0 −1

)
. (4.3)

At the point u = Λ2 a monopole becomes massless. Near this point solitonic degrees
of freedom become lighter than the fundamental fields which we use in the effective
action. We must switch to an alternative description in which the fundamental
objects are the solitonic states and their superpartners. These solitonic states are
called dual to the fundamental ones. In this sense aD is the dual field to a.

aD = c(u− Λ2)

a = a0 +
i

π
c(u− Λ2) log(u− Λ2). (4.4)

1Consider the covering p : X̃ → X of a connected topological space X with base point x and
denote the fiber of the base point as F = p−1(x). For each loop γ based at x, there is a unique
lift γ̃ such that p ◦ γ̃ = γ. The map F × π1(X,x) ∋ (x̃, γ) → γ̃(1) ∈ F forms a right group
action of the fundamental group π1(X,x) on the fiber F . This action is called monodromy action,
the corresponding map π1(X,x) → SymF , where SymF is the symmetric group of F , is called
monodromy, and the image of this map is called monodromy group.

2In ordinary differential equations with periodic solutions a monodromy matrix is the funda-
mental solution matrix evaluated at a time equal to the period and is closely related to questions
of stability of solutions.
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The monodromy for this when we loop around u = Λ2 is

aD → aD

a→ a− 2aD

with monodromy matrix MΛ2

MΛ2 =

(
1 0
−2 1

)
. (4.5)

There is a global consistency condition on monodromies since paths in the complex
plane can be distorted. This condition ties together the three monodromies

γ−Λ2 γ
Λ2

γ8

u0

Λ2 Λ2
−

Figure 4.1: Paths associated with different monodromies

MΛ2 ·M−Λ2 = M∞.

The two paths γ1, γ2 in fig. 4.1 can be joined to form the path γ∞ ∼ γΛ2 ◦ γ−Λ2 .
The order of the matrices comes from the fact that the monodromy group is a
representation of the right action. The choice of the base point plays an important
role in the interpretation of the massless particles’ charges as we will see. For a base
point in the upper half plane the remaining monodromy matrix is

M−Λ2 =

(
−1 2
−2 3

)
.

The mass of a particle is given by the central charge m =
√

2|Z| and the formula
(3.6) which can also be written in the form

Z = (nmne)

(
aD

a

)
.

So looping around a singularity is equivalent to shifting the electric and magnetic
quantum numbers (nm ne) → (nm ne)M . A particle that becomes massless at a
certain singularity must have quantum numbers that are invariant under this shift.
From this we find that the particles which become massless at ±Λ2 are the monopole
(1,0) and the dyon (1,-1). At infinity the W boson (0,1) becomes massless. If we
change u0 to −u0 (i.e. if we act with Z2 we find that the order of the matrices in the
multiplication changes. Consequently the monodromy matrix also changes and the
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interpretation of the massless particle associated to it. For a base point in the lower
half plane we find that a (1,1) dyon becomes massless.
On the other hand this requires the monodromy matrix to be of a particular form,
namely

M(nm,ne) =

(
1 + 2nmne 2n2

e

−2n2
m 1 − 2nmne

)
. (4.6)

If there were to be more than three singularities we would have a condition for
them analogous to (4.6). But since the monodromy matrices are required to have
a very special form, it is a problem of number theory, whether there exist solutions
with integer quantum numbers. It has been checked that for more than two strong-
coupling singularities there are no such solutions [23, 24].

The problem is now a mathematical one. Namely, to find multi-valued functions
a(u) and aD(u) with the given monodromies and additionally with a coupling τ =
∂aD/∂a such that Imτ > 0. This is a classical mathematical problem, the “Riemann
-Hilbert” problem, which is known to have a unique solution (up to multiplication by
an entire function). The Riemann-Hilbert problem addresses the question whether
it is possible to find a system of differential equations in the complex plane (up to
a few points or regular singularities) such that the solutions display the required
monodromy group. There are two possible approaches:

1. differential equations, which can be solved and explicit formulas for a and aD

can be found

2. spectral surfaces and period integrals, which offer a more geometric point of
view.

4.2 Elliptic Curves

The basic idea of solving the monodromy problem using elliptic curves is to refor-
mulate it in terms of a toroidal Riemann surface with a moduli space equivalent
to the quantum moduli space of the original theory. The advantage is that we can
interpret the gauge coupling τ as the period matrix of the torus and as such it is
guaranteed that Imτ > 0. The torus can be represented as a two-sheeted cover of a
branched x-plane. The algebraic expression for such a surface would be y2 = f(x, u),
i.e. the complex moduli u parametrizes the surface in a certain way. There are two
independent cycles on a torus see fig. 4.2. The period matrix can be written as the
ratio of two integrals

τ =
̟D

̟

where ̟D, ̟ are so-called period integrals

̟D =

∮

β
ω ̟ =

∮

α
ω
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Figure 4.2: Cycles on a torus

and ω is a holomorphic differential

ω =
1√
2π

dx

y
. (4.7)

Since in the gauge theory τ = ∂aaD we see that the period integrals are related to
the scalar and dual field by

̟D =
∂aD

∂u
̟ =

∂a

∂u
. (4.8)

Then these fields can be written as integrals of some differential, which is given only
up to exact forms

aD =

∮

β
λSW a =

∮

α
λSW . (4.9)

The singularities of the moduli space are points at which the torus degenerates, i.e.
the singularities which form the branches coincide. Cycles, which shrink to zero in
such a case, are called vanishing cycles and correspond to massless particles. Since
the cycles α, β form a basis, all cycles can be decomposed as ν = gβ + qα. If this
cycle vanishes we find that the central charge (and thus also the mass) vanishes

Z = gaD + qa = g

∮

β
λSW + q

∮

α
λSW =

∮

ν
λSW = 0. (4.10)

We see also that the coefficients of the decomposition are the magnetic and electric
quantum numbers. Monodromies arise in this framework in the following way. When
we loop with u around the singularities, cycles transform

(
β
α

)
→M

(
β
α

)
. (4.11)

Obviously this also determines the transformation properties of the periods (4.9).
The Picard-Lefshetz formula determines the monodromy action associated with a
vanishing cycle ν on any given cycle

Mν : γ → γ + 2(γ ◦ ν)ν. (4.12)
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Here ◦ is the intersection product of one-cycles. It can also be written in terms of a
symplectic intersection metric

ν ◦ γ = νtΩγ

where ν = (g, q) and Ω =

(
0 1
−1 0

)
. Geometrically, the intersection number counts

the number of intersections and its sign distinguishes whether or not the tangent
vectors of the cycles and the normal of the surface form a righthanded system.
In terms of the quantum numbers, we have for the intersection of two vanishing
cycles

ν1 ◦ ν2 = g1q2 − g2q1 ∈ Z. (4.13)

The right hand side is in fact the Dirac-Zwanziger condition for the possible quantum
numbers. If it vanishes, the dyons are mutually local. Mutually local states can
be described by an effective action which treats them both at the same time as
fundamental objects.
So the problem now is to find a Riemann surface with the correct monodromies.

4.3 Solution of the Model

The spectral surface for SU(2) can be written in different, equivalent forms, in the
sense that different parametrisations of the surface lead to the same physical results.
One form given in [10] is

y2 = (x− 1)(x+ 1)(x− u), (4.14)

where Λ has been chosen as 1 for simplicity. 3

The Seiberg-Witten potential λSW is then

λSW =

√
2

2π

√
x− u√
x2 − 1

dx. (4.16)

We can choose the branchcuts and cycles to be according to fig. 4.3. The periods

−1 1 u

α β1

Figure 4.3: Branch cuts (green) and basis cycles - α (blue) and β (violet). The roots
of (4.14) are shown in red. The dashed line is on the second sheet.

3The convention above is practical for comparisons with N = 4 theories. On the other hand,
if we want to add matter, we would have particles of half-integer spin. In this case it is therefore
convenient to multiply ne by 2 and divide a by 2. This leads to a parametrisation [11]

y
2 = (x2

− u)2 − Λ4 (4.15)

which can also be more systematically generalized to higher gauge groups.



CHAPTER 4. QUANTUM MONOPOLES 40

are then

aD =

√
2

π

∫ u

1
dx

√
x− u√
x2 − 1

a =

√
2

π

∫ 1

−1
dx

√
x− u√
x2 − 1

. (4.17)

It is sufficient to check the asymptotic behavior of a and aD close to u = ∞ and u = 1.

The behavior of a for u → ∞ can be read immediately from the integral repre-
sentation

a ≈
√

2

π

∫ 1

−1
dx

√
u√

1 − x2
=

√
2u.

In order to find the behavior of aD it is useful to switch to the variable z = x/u;
then the divergent part of the integral is

aD =

√
2

π

∫ 1

1/u
dz

√
u
√
z − 1√

z2 − 1/u2
≈

√
2u

π

∫ 1

1/u
dz

√
−1

z
= i

√
2u

π
log u.

For u→ 1, perform z = x/u again, and we find

aD =

√
2

π

∫ 1

1/u
dz

√
u
√
z − 1√

z − 1/u
√
z + 1/u

≈ 1

π

∫ 1

1/u
dz

√
z − 1√
z − 1/u

=

=
1

π

(
√
z − 1

√
z − 1

u
− (1 − 1

u
) log

(
√
z − 1 +

√
z − 1

u

))∣∣∣∣∣

1

1

u

=

=
i

2
(1 − 1

u
) ≈ i

2
(u− 1).

The period a is finite at u = 1

a =

√
2

π

∫ 1

−1

dx√
x+ 1

=
4

π

However, the derivative of a with respect to u is divergent. The dominant term can
be extracted upon splitting the integration domain into [−1, s] and [s, 1]

da

du
= −

√
2

2π

∫ 1

−1

dx√
(x2 − 1)(x− u)

≈ −
√

2

2π

∫ 1

s

dx√
(x+ 1)(x − 1)(x− u)

≈

≈ − 1

2π

∫ 1

s

dx

x− u
= − 1

2π
log(x− u)

∣∣∣∣
1

s

≈ − 1

2π
log(1 − u).

So the expansion of a near u = 1 is

a =
4

π
− 1

2π
(u− 1) log(1 − u).

Comparing these expansions with the results obtained in the previous section, we
see that they give the correct monodromies.
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We can find the formula for the periods using the differential equation approach.
The Seiberg-Witten potential satisfies a second order differential equation, the Picard
Fuchs equation,

4(1 − u2)
∂2λSW

∂u2
= λSW . (4.18)

The periods a, aD both satisfy the same relation. In this case it is fairly easy to
derive and check this differential equation. For general gauge groups the situation is
more complicated and is better done systematically. A derivation of this procedure
can be found in appendix D, the explicit derivation for SU(2) is given there as well.
The Picard Fuchs equation, together with the asymptotics, can be used to find an
explicit form of the periods.
Equation (4.18) is a Riemann differential equation in the variable w = 1

2(u+ 1)

w(1 −w)
d2f(w)

dw2
− 1

4
f(w) = 0, (4.19)

with parameters a = b = −1
2 , c = 0, as can be seen from (A-2). We are looking for a

solution (which will be the period a) such that it is finite for w = 1 and for large w
it goes as

√
w. A convenient choice is one of the Kummer solutions in terms of the

hypergeometric function

u3 = (−w)−aF

(
a, a+ 1 − c, a+ 1 − b;

1

w

)
.

For the period aD we want a function that vanishes at w = 1 and has a logarithm
for large w. A good candidate is

u6 = (1 − w)c−a−bF (c− a, c− b, c+ 1 − a− b; 1 − w).

Substituting for the parameters and w, these are

u3 =

(
−1 + u

2

) 1

2

F

(
−1

2
,
1

2
, 1;

2

u+ 1

)

u6 =
1 − u

2
F

(
1

2
,
1

2
, 2;

1 − u

2

)
.

What remains is to check their asymptotics and match them to the asymptotics
found from the integral representation; useful relations for this are given in appendix
A. For u→ ∞ and u→ 1, we have

u→ ∞ u→ 1

u3 ≈ ±i
√
u

2
u3 ≈ ±i 2

π

u6 ≈ −
√

2

π

√
u(log u+ 3 log 2 − 2) u6 ≈ 1 − u

2
,

from which we see that the periods are

a = ∓2iu3 = 2

√
1 + u

2
F

(
−1

2
,
1

2
, 1;

2

u+ 1

)
(4.20)

aD = −iu6 = i
u− 1

2
F

(
1

2
,
1

2
, 2;

1 − u

2

)
. (4.21)
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4.4 BPS Spectrum

We shall briefly discuss the stability of BPS states and the BPS spectrum. The
spectrum of a theory is the set of all existing BPS states. For a more thorough
treatment see [10, 33], for a pedagogical treatment [28].
Any complex number can be regarded as a two-dimensional real vector. It will be
useful in the following to regard the central charge as well as the fields a, aD as two-
dimensional vectors. The central charge of a BPS state with given quantum numbers
can be regarded as a vector in the complex plane, given by a linear combination of
the vectors aD and a, see (3.6)

Z = nmαD + nea.

For a given point u in the moduli space, if the ratio aD/a is not real (i.e. the vectors
aD, a are not aligned), the numbers aD and a generate a lattice and all possible
central charges are points in this lattice. The possible decays from a state with
central charge Z with quantum numbers (nm, ne) to a set of final states with central
charges Zi and quantum numbers (nm,i, ne,i) are determined by charge conservation

Z =
∑

i

Zi.

The triangle inequality for the sum of vectors states that

|Z| ≤
∑

i

|Zi|. (4.22)

Since a decay is impossible if the mass of the original state is lower than the sum of
the masses of the resulting particles, decays are possible only if (4.22) is an equality.
This case corresponds to all vectors Zi and Z aligned, i.e. ti = Zi/Z ∈ R and∑
ti = 1.

If aD and a are not aligned, this relation requires that all quantum numbers must
be proportional to the incoming ones

qi = ne,i/ne = nm,i/nm, ∀i.

This means that all vectors Zi are proportional to Z. Furthermore, in order to have
a possible decay, the proportionality factors qi must sum up to 1. In this case the
states are only neutrally stable, since the energy of the incoming state is the same
as the sum of the final states.
On the other hand, if aD and a are aligned (i.e. their ratio is real), the lattice of cen-
tral charges is in fact only a single line. It is now much easier to satisfy the equalities
and more states will become unstable. The set of all points u in the moduli space
where this happens is called the curve of marginal stability C. It can be determined
numerically from the explicit expressions for aD and a and is shown in figure 4.4.
It can also be studied analytically as in [34, 35]. The moduli space is separated by
this curve into two distinct regions: the strong and the weak (semi-classical) regions
with two different spectra.
The ratio aD/a takes all values in [−1, 1] as u varies along the curve, with [−1, 0] in
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Figure 4.4: The curve of marginal stability C separates the moduli
space in the strong coupling region RS and the weak coupling region
RW .

the upper half plane and [0, 1] in the lower half plane. From this it follows immedi-
ately that all states with quantum numbers such that ne/nm ∈ [−1, 1], become mass-
less somewhere on this curve; more precisely at the point u where aD/a = −ne/nm.
But the only massless particles with nonzero magnetic charge are the monopole (1, 0)
and the dyon (1, 1), resp., (1,−1). So states that would become massless anywhere
else than at u = ±1 are not part of the spectrum.
Performing a monodromy transformation on a point in the weak coupling region
cannot change the theory and thus must leave the spectrum of the weak coupling
region SW invariant. So the spectrum must be invariant under the monodromy
transformation of the quantum numbers given in [33]

SWM∞ = SW .

We know that the spectrum contains at least the monopole and the dyon. Since

Mk
∞ = (−1)k

(
1 −2k
0 1

)
,

applying this transformation k times to the monopole generates all dyons with even
ne (1, 2k) k ∈ Z and applying to the dyon all dyons with odd ne (1, 2k+1) k ∈ Z. The
W boson is invariant under M∞ : (0, 1)M∞ = −(0, 1) and so is also part of the weak
coupling spectrum. No other dyons can exist: if there were a state (nm, ne) with
|nm| ≥ 2 there would also be all states (nm, ne − 2nmk) and we could find a suitable
k such that (ne − 2nmk)/nm = ne/nm − 2k ∈ [−1, 1] and this state would become
massless. Hence it cannot be present in the spectrum and so the weak coupling
spectrum is formed by dyons (1, n) and the W boson (0, 1).
The Z2 symmetry acting on the moduli space requires that the spectra at the points
u and −u be the same. This means that for each state (nm, ne) at u there must exist
a state (ñm, ñe) at −u such that their masses are equal. Thus there must exist a
matrix G which relates the functions aD and a up to a phase factor

(
aD(−u)
a(−u)

)
= eiωG

(
aD(u)
a(u)

)
(4.23)
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where ω is a phase. Thus the state (nm, ne) at −u corresponds to the state (nm, ne)G
at u. In the weak coupling region this is just a matter of standard relations among
hypergeometric functions, as can be seen from the following. Using the same notation
as in the text following (4.19), the change from u to −u corresponds to the change
from w to 1−w. The Kummer solution u3 can be written either in terms of w or in
terms of 1 −w as

u3 = (−w)−aF

(
a, a+ 1 − c, a+ 1 − b;

1

w

)

= (1 −w)−aF

(
a, c− b, a+ 1 − b,

1

1 − w

)
.

So

a(−u) = 2

√
1 − u

2
F

(
−1

2
,
1

2
, 1;

2

1 − u

)
= 2u3

and thus a(−u) = ±ia(u). For aD we find that

aD(−u) = −iwF (
1

2
,
1

2
, 2, w),

which is just a multiple of the Kummer solution u5

u5 = w1−cF (a+ 1 − c, b+ 1 − c, 2 − c; z).

We can now use a standard relation to change from u5 to u3 and u6 (which are
essentially a and aD)

eiπ(1−a) Γ(1 − a)Γ(c− b)

Γ(c+ 1 − a− b)
u6 =

Γ(1 − a)Γ(a+ 1 − c)

Γ(2 − c)
u5+

+ eiπ(1−a) Γ(c− b)Γ(a+ 1 − c)

Γ(a+ 1 − b)
u3.

In our case this gives
u5 = −i(u6 − 2u3)

and thus
aD(−u) = −iaD(u) + ia(u).

This holds for Imu > 0, in the lower half plane the signs in the phases change as well
as the sign between a and u3. So the matrix G which relates the quantum numbers
of equivalent states is in the weak coupling region (for Imu > 0)

GW =

(
1 −1
0 1

)
(4.24)

and the phase ω is −π
2 .

Now we will do a similar analysis for the strong coupling region. In the strong
coupling region there is a cut running from u = −1 to u = 1. We must therefore use
analytic continuations of the functions aD, a which are related to the usual functions
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by a monodromy around u = 1 (given by (4.5)). Combining both we see that the
spectrum in the strong coupling region SS must be invariant under (in the upper
half plane)

GS = M−1
1 GW =

(
1 −1
2 −1

)
. (4.25)

But now the square of GS is the negative unit matrix G2
S = −1 and thus all states

come in Z2 doublets

(nm, ne) ∈ SS ⇐⇒ (nm + 2ne,−nm − ne) ∈ SW ,

The monopole (1,0) and the dyon (1,-1) form such a doublet. In fact this is the
only doublet in the spectrum. For either is ne/nm ∈ [−1, 0] and becomes massless
somewhere or its partner becomes massless since then (n− nm − ne)/(nm + 2ne) =
−(ne/nm+1)/(2ne/nm+1) ∈ [−1, 0]. Since the only massless states are the monopole
and the dyon no other states can exist. The argument for the lower half plane is
analogous. Thus the strong coupling spectrum contains only the monopole and the
dyon (1,-1) (resp., (1,1)).

4.5 SU(2) Quantum Monopoles

We can now combine the t’Hooft-Polyakov monopole and the explicit moduli depen-
dence of the scalar field and use this to study the spatial dependence of the moduli
as well as the quantum corrections that arise. We will first review the results of [30].
In the previous chapter the superpotential F was found, at least implicitly. From the
general reduction of the N = 2 action to N = 0 fields given in (2.10)(2.11), (2.12)
we can find the action for the physical bosonic fields

SF =− 1

4π
Im
∫

d4xFAB

[
1

2
(BA

i + iEA
i )(BB

i + iEB
i ) + ∇µφ

A∇µφ̄B+

+
1

2
[φ, φ̄]A[φ, φ̄]B

]
.

As before, we need to find the Hamiltonian. The conjugate momenta receive quantum
corrections

ΠiA = − 1

4π
Re

(
FAB(BB

i + iEB
i )
)

(4.26)

ΠA = − 1

4p
Im (FAB)∇0φ̄

B . (4.27)

The Hamiltonian is then

H =
1

8π
Im

∫
d3xFAB(BA

i B
B
i + EA

i E
B
i + 2∇iφ

A∇iφ̄
B + 2∇0φ

A∇0φ̄
B+

+ [φ, φ̄]A[φ, φ̄]B).
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The Bianchi identities do not receive any quantum corrections, since they are of
geometric origin, but the Gauss constraint is now modified

∇iΠiA +
1

4π
Im (FCD)fC

AB(φB∇0φ̄
D + φ̄B∇0φ

D) = 0.

As before, we shall consider only static configurations and choose the gauge ∇0φ
A =

0. The vacuum is given by the same equations as in the classical case (3.4). The
Hamiltonian can again be split into two terms:

H1 =
1

8π

∫
d3x Im (FAB)

(
[φ, φ̄]A[φ, φ̄]B+

(BA
i + iEA

i +
√

2eiα∇iφ
A)(BB

i − iEB
i +

√
2e−iα∇iφ̄

B)
)

and a surface term

H2 = −
√

2Im
∫

d~Seiα

(
1

4π
~BAFA + ~ΠAφ

A

)

Thus the first term is positive definite as long as the imaginary part of FAB is positive.
The BPS equations for the general monopole are the same as for the classical theory

BA
j + iEA

j + eiα
√

2∇jφ
A = 0, (4.28)

where eiα is a constant phase. Since the prepontial F must be gauge invariant, it
can depend only on φ =

√
φAφA. Thus for the derivatives we have

FA = F ′φ
A

φ
(4.29)

FAB = F ′′φ
AφB

φ2
+

F ′

φ

(
δAB − φAφB

φ2

)
. (4.30)

given by (4.20) and (4.21).
As in the classical case, we restrict ourselves to the radial ansatz (3.7) :

φA = eAφ(r) AA
i = ǫAije

j

(
1 − L(r)

r

)
AA

0 = eAb(r) (4.31)

with electric and magnetic fields

BA
i = eie

AL
2 − 1

r2
+ PA

i

L,r

r
(4.32)

EA
i = −eie

Ab,r − PA
i

bL

r
(4.33)

and the projector given in (3.10). The derivatives of the prepotential are the dual
field F ′ = φD and the complex coupling F ′′ = τ = dφD/dφ. Thus the derivatives
can be written as

FA = φDeA

FAB = τeAeB +
φD

φ

(
δAB − eAeB

)
.
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The asymptotic values of the scalar field and the dual field are the solutions of the
Seiberg and Witten model given by (4.20) and (4.21).

lim
r→∞

φ(r) = a lim
r→∞

φD(r) = aD.

These functions are given in terms of hypergeometric functions in (4.20) and (4.21).
The hypergeometric function of the arguments ±1

2 can be written in terms of com-
plete elliptic integrals of the first and second kind (A-11). Using (A-8) to lower the
value of the third parameter and (A-9) to shift the value of the argument we can
rewrite the scalar field and its dual as

a(u) =
4

πq
E(q) aD(u) = −i 4

πq

(
E(q′) − K(q′)

)
(4.34)

where

q =

√
2

u+ 1

and q′ =
√

1 − q2 is the complementary modulus. The coupling τ is given by the
derivative dαD/da, which is in terms of elliptic integrals

τ = i
K(q′)

K(q)
. (4.35)

Here τ is the quantum corrected generalized coupling. The imaginary part of τ plays
the role of the coupling for the Abelian fields, the imaginary part of the ratio φD/φ
plays the role of the coupling for the non-Abelian fields.
The electric and magnetic quantum numbers are defined analogously as before

nmaD = − 1

4π

∫

S2
∞

dSiB
A
i φ

D
A nea = −

∫

S2
∞

dSiΠiAφ
A, (4.36)

as well as the central charge Z = nmaD + nea and the phase α = π
2 − argZ.

We can use the ansatz as before and find an explicit expression for the function L

L =
κr

sinh[κ(r + δ)]
, (4.37)

with two integration constants. The only difference is that now we do not require the
solution to be finite everywhere, since we cannot expect it to be valid in the strong
coupling region. Thus the parameter δ can also be nonzero. The constant κ can be
evaluated from the asymptotic value

κ = Re (
√

2eiαa) (4.38)

The local central charge is defined as Z = nmφD + neφ; we shall show that for the
BPS solution it has constant phase. First we shall define two more fields

X = Re (eiαφ) XD = Re (eiαφD)
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and find a relation between these. Differentiating the BPS equation and taking the
real part we have

∇iB
A
i + i∇iE

A
i + eiα

√
2∇i∇iφ

A = 0,

imposing the Bianchi identity ∇iB
A
i = 0 and taking the real part we get

Xrr + 2
Xr

r
− 2

L2X

r2
.

The dual field φD satisfies the same equation since inserting the BPS equation in the
Gauss constraint ∇iΠiA = 0 gives

∇iΠiA = ∇i

(
ReFABeiα∇iφ

A
)

= Re eiα∇i∇iFA = 0.

At r → ∞ we have by the definition of α that Re (eiαZ) = 0, which implies

lim
r→∞

nmXD(r) + neX(r) = 0.

The covariant derivatives of X and XD are given by the magnetic field and the
momentum. Taking the real part of the BPS equation, we find a relation for ∇iX,
multiplying the BPS equation by FAB and then taking the real part we find a relation
for ∇iXD:

BA
i = −

√
2∇i(e

AX) (4.39)

ΠiA =
1

4π

√
2∇i(eAXD). (4.40)

From the surface integrals which define the quantum numbers, we can find the asymp-
totic form of the magnetic field and the conjugate momentum (and thus also of the
covariant derivatives)

BA
i − ≈ eAeinm

r2

ΠiA− ≈ eAeine

4πr2
.

Hence, asymptotically

4πnmΠiC − neB
A
i δAC = 0 (4.41)

which implies nm∇i(eCXD) + ne∇i(e
AX)δAC = 0. From this we conclude that the

relation
nmXD(r) + neX(r) = 0 (4.42)

holds for all r. This implies that the phase of the local central charge Z = nmφD+neφ
is constant

Re
(
eiαZ(r)

)
= 0. (4.43)

Note that the second order differential equations for X and XD can be used, together
with the Picard-Fuchs equations, to derive a second order differential equation for
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u(r).
The curve of marginal stability is given by Im φD

φ = 0. This can be rewritten using
the central charge Z and the field X as

Im φD

φ
(r) =

1

|φ|2Im (φ̄φD) =
1

nm|φ|2Im
(
(nmφD + neφ)φ̄

)
=

=
1

nm|φ|2Re (ιZ̄φ) =
1

nm|φ|2 |Z(r)|X(r).

Thus if Im φD

φ = 0 at a critical radius r0, this corresponds to two possibilities: either
|Z(r0)| = 0 (a solution called Z-pole) or X(r0) = 0 (a solution called X-pole). Note
that from the BPS equation we find the explicit form

X = − 1√
2

d

dr
lnL =

1√
2

(
−1

r
+

κ

tanh[κ(r + δ)]

)
. (4.44)

4.6 SU(n) Quantum Monopoles

The idea in 4.2 to describe a theory using an elliptic curve can be generalized to
higher gauge groups [23–27,36]. For SU(n) the equation of the curve is

y2 = p(x)2 − Λ2n, (4.45)

p(x) = det(x− < φ >) = xn −
n−2∑

l=0

ul(< φ >)xn−l (4.46)

the uk are Weyl invariant Casimir variables. The classical limit can be obtained by
Λ → 0; this shows that the classical curve p(x) splits into two copies p(x)±Λn. Thus
the roots of this polynomial also split

ei(uk) → e±i (uk) = ei(u2, . . . , un ± Λn).

The genus of this hyperelliptic curve is g = n − 1. There are n − 1 holomorphic
differentials

ωn−i =
xi−1dx

y
, i = 1, . . . , g (4.47)

The one-cycles γi, i = 1, . . . , 2g to create a (g, 2g) dimensional period matrix

Πij =

∫

γj

ωi. (4.48)

In a symplectic basis of the one-cycles defined by αi = γi, βi = γg+i, i = 1, . . . , g
which satisfies αi ◦ βj = δij , αi ◦ αj = 0 and βi ◦ βj = 0, we can write Π = (A,B
which gives as the metric on the quantum moduli space τ = A−1B and by Riemann’s
second relation Imτ is positive. This basis can be easily obtained by sorting the
e2n roots of 4.45 and defining n one-cycles γi which encircle the root pair e2i−1, e2i.
These are not independent, but satisfy

∑n
i=1 γi = 0. The n − 1 cycles βi can be
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defined to encircle the pair e2i, e2i+1. The αi which form a symplectic basis together
with βi can be written as αi =

∑
j≤i γj . Then

Aij =

∫

αj

ωi =
∂

∂ui+1
φj

Bij =

∫

βj

ωi =
∂

∂ui+1
φD,j. (4.49)

The period matrix τ is defined as τ = A−1B and equals also the matrix of second
derivatives of the prepotential. It forms the metric on the moduli space and is thus
positive definite. The φD,i and φi can be expressed as integrals over the Abelian
differential of the second kind λ:

φD,i =

∫

βi

λ φi =

∫

αi

λ, (4.50)

with
λ = C

1

2πi

d

dx
p(x)

xdx

y
.

The constant C is chosen to fit the classical limit.
As shown in [37], one can derive a set of differential equations for the period integrals
in a standard way. The procedure and its derivation are quite lengthy; they can be
found in appendix D. If two roots become degenerate, some cycle or combination of
cycles degenerates, which in turn corresponds to particles becoming massless. Math-
ematically the points where two roots of a polynomial degenerate can be described
using the discriminant, which vanishes at these points

∆ =
n∏

i<j

(ei − ej)
2.

Thus the discriminant describes singular curves in moduli space, where the descrip-
tion using the hyperelliptic curve breaks down, and where particles become massless.
In the classical case the singular locus where the discriminant vanishes is given as a
solution of a complex equation, i.e. as a complex codimension one surface. In the
quantum picture the discriminant can be written as a product of two discriminants
so the singular locus where the discriminant vanishes is the solution of either one
of the complex equations. This means that it is a two-component codimension one
surface.

4.7 SU(3) Quantum Monopoles

For SU(3) we have a genus 2 curve given by

y2 = (x3 − ux− v)2 − Λ6, (4.51)

where u,v are the Casimir variables u2, u3, resp. The discriminant is classically

∆0 = 4u3 − 27v2
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and for the quantum case it splits as mentioned into two shifted copies

∆ = 64Λ18∆+∆− = 64Λ18(4u3 − 27(v − Λ3)2)(4u3 − 27(v + Λ3)2).

Thus there are two singular curves where the discriminant becomes zero and states
become massless

Q+ : 4u3 − 27(v − Λ3)2 = 0 Q− : 4u3 − 27(v − Λ3)2 = 0. (4.52)

These are shown schematically for real u and v in fig. 4.5. In [25] two different

R
e(

v)

Re(u)

Figure 4.5: The singular curve for classical SU(3) (blue) splits into two separate
curves for quantum SU(3) (red).

types of points on the singular curve are pointed out. First the ’Z2 vacua’ which are
the intersection points of ∆±. These are the three points u = (27

4 Λ)1/3 exp i2π/3k,
k = 0, 1, 2, v = 0. At these points a ’Z2’ symmetry remains unbroken, which
corresponds to two mutually local dyons becoming simultaneously massless. The
other important cases are the ’Z3 vacua’ singular points where the derivative of the
curve with respect to the moduli becomes zero. These occur at u = 0, v = ∓Λ3.
At these points, also called Douglas-Argyres points, two mutually nonlocal dyons
become massless. These points are very interesting since there is no effective action
which would describe both dyons simultaneously as local fields. The opportunity
to find out more about nonlocal dyons was one of the motivations for further work.
The period integrals for SU(3) monopoles were derived in [24], The branch cuts and
basis cycles αi, βi are chosen as in fig. 4.6. The fields ai and their duals aD,j are

e1 e2 e5 e6e3 e4

α2 α1
β2 β1

Figure 4.6: Branch cuts (green) and cycles for SU(3) theory: type α - blue, type β
- violet. The roots of (4.51) are shown in red. The dashed lines are on the second
sheet.

integrals over the Abelian differential of the second kind λ, (4.50)

λ =
1

2πi

x(3x2 − u)dx

y
. (4.53)
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In appendix D two differential equations for this potential are derived. The Picard-
Fuchs equations can be written in form of two differential operators L1, L2, such that
all φj and φD,j are solutions of the system Ljf = 0, where f is any of the functions
φi, φDj. The differential operators turn out to be

L1 = (27Λ6 − 4u3 − 27v2)∂2
u − 12u2v∂u∂v − 3uv∂v − u

L2 = (27Λ6 − 4u3 − 27v2)∂2
v − 36uv∂u∂v − 9v∂v − 3 (4.54)

and an additional constraint, which will turn out useful in the solution, arises from
the linear combination uL2 − 3L1

u∂2
v − 3∂2

u = 0. (4.55)

This differential constraint must be satisfied when acting on any φj and φDj . The
forms of φi, φDi can be found by combining this with the asymptotic expansions of
the integrals. More details of this calculation are given in appendix E. The explicit
formulae are given in (E-14).



Chapter 5

Analysis of SU(2) Quantum
Monopoles

We showed in the previous chapter that for BPS monopoles both the spatial de-
pendence of the scalar field φ(~r), e.g. [30], and the dependence on the moduli φ(u),
e.g. [10], are well described. We can combine these to find the spatial dependence of
the moduli u(~r). First we derive a first order differential equation for the function
u(r) and determine general properties of its solutions. Next we study different types
of solution, as well as their properties (energy density, electric and magnetic fields).
Most of the work was published in [38] .

5.1 First Order Differential Equation

It is possible to derive a first order differential equation for the moduli u(r). In fact
we know that u(r) follows lines of constant Z phase. Now we will show how its size
varies.
We shall start by inserting the radial ansatz in the expression for ΠiA (4.26) and
using the fact that PAB = δAB − eAeB and eie

B are orthogonal projections, we have

ΠiA = − 1

4π
Re

[
PAi

(
Lr

r
− i

bL

r

)
φD

φ
+ τ eieA

(
L2 − 1

r2
− ibr

)]
.

The functions L, b are real, so we can write everything in terms of real and imaginary
parts and obtain

ΠiA = − 1

4π

[
PAi

(
Lr

r
Re φD

φ
+
bL

r
Im φD

φ

)
+ (5.1)

+eAei

(
L2 − 1

r2
Re τ + brIm τ

)]
. (5.2)

53
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Comparing this with the relation between the magnetic field and the momentum,
which was derived in the previous section (4.41) we are left with

ne

nm

1

4π

(
eieA

L2 − 1

r2
+ PiA

Lr

r

)
=

= − 1

4π

(
PiA

(
Lr

r
Re φD

φ
+
bL

r
Im φD

φ

)
+ eAei

(
L2 − 1

r2
Re τ + brIm τ

))
.

Separating this with respect to the projector PA
i and its complement eie

A we find
the following relations

ne

nm

L2 − 1

r2
= −

(
L2 − 1

r2
Re τ + brIm τ

)
(5.3)

ne

nm

Lr

r
= −

(
Lr

r
Re φD

φ
+
bL

r
Im φD

φ

)
. (5.4)

Thus although we do not have the explicit dependence of b on r or u we know that

b = −
ne

nm
+ Re φD

φ

Im φD

φ

Lr

L
(5.5)

br = −L
2 − 1

r2

ne

nm
+ Re τ
Imτ

(5.6)

When we substitute for br in the BPS equation (3.11) we find

√
2 eiαφr =

1 − L2

r2
i

Imτ

(
ne

nm
+ τ

)
.

But since φ(r) = φ(u(r)), we can use the chain rule φr = φuur and the dependence
φ(u) in (4.34), which gives

φu =
q

π
K(q) .

Inserting everything in the BPS equation we get

√
2 eiα

√
2

1 + u

K(q)

π
ur =

1 − L2

r2
i

Imτ

(
ne

nm
+ τ

)

and we find the differential equation

ur =
π

2

√
1 + u

1 − L2

r2
e−iα

K(q)

i

Imτ

(
ne

nm
+ τ

)
. (5.7)

This is a first order differential equation; the solutions have one integration constant.
We will choose it to be the parameter which labels the vacua, i.e. the value of u at
infinity u(r → ∞) = u0. From u0 the constants α and κ are determined

α =
π

2
− arg(nmφD(u0) + neφ(u0)) (5.8)

κ =

√
2nm|φ(u0)|2

|nmφD(u0) + neφ(u0)|
Im φD(u0)

φ(u0)
. (5.9)
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5.2 The Spatial Dependence

The dependence of the solution u(r) on δ is hidden only in the function L and can
be removed by changing the parameter from r to X given by (4.44).This changes the
differential equation to

uX =
π

2

√
1 + u

2

e−iα

K(q)

i

Imτ

(
ne

nm
+ τ

)
. (5.10)

So δ does not affect the shape of the curve u(r), only its parametrisation. The
parameter κ determines the "speed" of the movement.
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δ >0

Figure 5.1: The dependence X(r)

We see from fig. 5.2 that there are essentially three different cases depending on
whether δ is positive, negative or zero. When δ > 0 X changes monotonically from
X = κ/

√
2 at r = ∞ to X → −∞ at r = 0. For δ = 0, X also changes monotonically

but ends at X = 0 for r = 0. The δ < 0 case is quite different. For r = ∞, it starts
at X = κ/

√
2 and decreases. For finite r, there is a minimum and then X starts to

increase and goes to ∞ at r = −δ > 0. The minimum of X is at an r which is a
solution of the condition

κr = sinh[κ(r + δ)]., (5.11)

In the limit δ → ∞ the r dependence of X is very simple X = 1/
√

2(κ − 1/r). As
we will see later, in this limit, all non-Abelian parts of the fields are suppressed.

5.3 The Attractor Equation

Using X as a parameter and using the Seiberg-Witten metric ds2 = Imτdφdφ̄, the
equation for u becomes

uX =
ie−iα

2nm
guū∂ūZ̄ = − 1

nm
guū∂ū|Z| (5.12)

where we also have used the local central charge Z(u) = nmφD(u)+neφ(u) to rewrite
the equation in a suggestive form. In fact, since there is a one to one map between
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u and Z we may use Z as a coordinate instead of u. This leads us to the equation

dZ

dX
=
ie−iα

2nm
guū∂uZ∂ūZ̄ =

ie−iα

2nm
gZZ̄ , (5.13)

where gZZ̄ is the Seiberg-Witten metric in Z coordinates, or equivalently or

d|Z|
dX

=
1

2nm
guū∂u|Z|.∂ū|Z| (5.14)

This is an attractor equation as first discovered in [39] and it can alternatively be
derived taking the zero gravity limit of the ordinary attractor equations. Using this
form of the equation and the fact that the Seiberg-Witten metric is positive definite,
we see that d |Z|

dX > 0. This means that when X is decreasing (which is the usual
situation for decreasing r), |Z| will decrease and |Z| = 0 is an attractor point.

5.4 General Properties of the Solutions

Using the above relations we may write

d|Z|
dr

=
1

2nm
guū∂u|Z|∂ū|Z|

dX

dr
, (5.15)

as well as
arg

dZ

dX
=
π

2
− α. (5.16)

It follows from this and (5.8) that the phase α and the phase of the central charge
sum up to π

2

α =
π

2
− argZ. (5.17)

From this we can see that the curve Z(X) is a straight line in the Z-plane going
from Z0 = Z(∞) to Z = 0.
From fig. 5.2 we see that the derivative dX

dr is in general positive, so |Z| will decrease
when we decrease r. However, if the sign of the derivative dX

dr changes (which is the
case for δ < 0), the phase of the derivative jumps by π and |Z| starts to increase for
decreasing r, ending up at X = ∞ for r = −δ. This behavior, that |Z| "bounces" at
some value of r and starts to increase leads us to call this class of solutions, bouncing
solutions.

The point at which the bouncing solution turns around is given by (5.11). Whether
the solution hits first the origin Z = 0 or the curve of marginal stability elsewhere
distinguishes the X- and Z-poles. Since X is given by (4.44), an X-pole corresponds
to the condition for the critical radius

tanh[κ(r + δ)] = κr, . (5.18)

Physical, i.e. positive solutions r > 0, occur only for positive δ. As a consequence
we see that the bouncing solutions always lie outside the curve of marginal stability.
In fig. 5.2 the curve of marginal stability is shown as well as some solutions. We can
see that if α(u0) ∈ (−π

2 ,
π
2 ), the solution is a Z-pole; otherwise it is an X-pole.
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Figure 5.2: Solutions, the curve of marginal stability and the branch
cut in the complex plane of the central charge. Solutions with phase
α ∈ (−π

2 ,
π
2 ) hit the curve of marginal stability C at Z = 0 and are

Z-poles, the others are X-poles or XZ-poles (if α = ±π
2 )
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Figure 5.3: Solutions and the curve of marginal stability in moduli
space. The BPS solutions end on the curve of marginal stability,
since the BPS equations do not hold inside.
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5.5 Monopole Solution

We concentrate now, unless otherwise stated, on the case with quantum numbers
nm = 1, ne = 0. In this case, the central charge coincides with the dual scalar field.
Also the solutions to the differential equation are symmetric with respect to the real
u-axis, since

du

dr

∣∣∣∣
u

=
du

dr

∣∣∣∣
ū

.

The field φD is zero at u = 1 so the Z-poles end at this point in the u-plane. We
would like to see what value the parameter r acquires at this point. At this point
φ = 4/π and this corresponds to X = 4/π cosα. From the definition of X in (4.44),
this corresponds in terms of r to the condition

−1

r
+ κ coth[κ(r + δ)] =

√
2 cosα

4

π
. (5.19)

For X-poles, the factor cosα is negative and thus X becomes zero before this point
is reached. For Z-poles, (i.e. α ∈ (−π/2, π/2)), the factor cosα is always positive
and thus u = 1 is reached before X = 0. For positive cosα and δ < 0, there are
in principle two possibilities: either the solution “bounces” back at some point or it
reaches u = 1. This is governed by the value of δ: for a value of δ greater than a
certain δ0 the solution will reach Z = 0 before it reaches the point of the bounce. If
δ is smaller than δ0 the solution will be a bouncing solution. This particular value
δ0 < 0 solves the equation

8
√

2

π

κ cosα

κ2 − 32
π2

= sinh

[
8
√

2 cosα

π

κ

κ2 − 32
π2 cos2 α

+ κδ0

]
, (5.20)

the value δ0 and the corresponding solution are called critical. All other cases are
called noncritical.

5.6 Electric and Magnetic Fields of Monopoles

We substitute in (4.32) for b and br from (5.5) and (5.6) and we find the following
expressions for the electric/magnetic fields

Babel =
L2 − 1

r2
Bnon =

Lr

r
(5.21)

Eabel =
L2 − 1

r2
Re τ + ne/nm

Imτ
Enon =

Lr

r

Re φD

φ + ne

nm

Im φD

φ

. (5.22)

In the classical case, for the t’Hooft-Polyakov monopole, the dual field is just a
multiple of the scalar φD = τφ, with τ constant. So the factors relating the Abelian
and the non-Abelian fields are equal and constant. For ne = 0, since the complex
coupling is τ = θ/2π + 4πi/g2, the electric fields are related to the magnetic fields
in terms of the coupling constant g and the theta angle θ as

E =
θg2

8π2
B. (5.23)
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This holds for both for Abelian and non-Abelian fields.
Classically, the non-Abelian magnetic field is always nonzero. In the quantum

case the non-Abelian magnetic field can become zero only for the X-pole or in the
δ → ∞ limit (see below).

The asymptotic behavior for large r of the electric/magnetic fields is the same
for all types of solutions listed below. The Abelian fields have for large r a 1/r2

behavior, the non-Abelian fields vanish exponentially

Babel ≈ − 1

r2
Eabel ≈ − 1

r2
Re τ(u0) + ne

nm

Imτ(u0)
(5.24)

Bnon ≈ κ

r
e−κ(r+δ) Enon ≈ κ

r
e−κ(r+δ)

Re φD

φ (u0) + ne

nm

Im φD

φ (u0)
(5.25)

In the quantum case there are several different types of behavior: bouncing so-
lutions, X-poles, Z-poles and solutions which are on the border between two types.
In the following we shall briefly describe the various types of behavior. All calcu-
lations are straightforward, sometimes rather lengthy. For Z-poles one needs to use
expansions of various fields around u = 1; these are given in the appendix B.
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Figure 5.4: The magnetic and electric fields of an X-pole (δ > 0), a bouncing solution
(δ < 0), and a critical X-pole (δ = 0).
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5.6.1 δ → ∞ limit

For large δ, the magnetic fields have the following behavior

Babel = − 1

r2
+ 4κ2e−κ(r+δ) Bnon =

2κ

r
e−κ(r+δ).

The electric fields include these factors, as given in (5.21), (5.22), but there is also
the δ-dependence of the coupling τ , so their behavior is more complicated.
From the above we see that in the δ → ∞ limit only the Abelian fields survive.
Then the Abelian magnetic field is Bab = 1/r2 but the Abelian electric field has
a more complicated dependence. Thus we can identify the δ → ∞ as the Abelian
limit, where there are only Abelian fields. In this case the X(r) (4.44) dependence
simplifies to X = 1/

√
2(κ−1/r), so the X-pole hits the curve of marginal stability at

r = 1/κ. The condition (5.19) which describes the point r at which a Z-pole reaches
u = 1 simplifies also to r = (κ−

√
2 cosα4/π)−1.

5.6.2 Bouncing solution

As shown before, a bouncing point occurs for either δ < 0 and α 6∈ (−π
2 ,

π
2 ), or for

δ < δ0 and α ∈ (−π
2 ,

π
2 ). At the bouncing point both the Abelian magnetic field and

the Abelian electric field vanish, since the factor L2 − 1 vanishes. The non-Abelian
fields remain finite.

5.6.3 X-pole

The solution is an X-pole for δ ≥ 0 and α 6∈ [−π
2 ,

π
2 ]. The non-Abelian magnetic field

vanishes at the point where the solution u(r) hits the curve of marginal stability.
As for the non-Abelian electric field, Im (φD/φ) also vanishes. A careful calculation
shows that both effects cancel and the remaining limit is finite.

The case δ = 0 is on the border between a bouncing solution and an X-pole:
the solution hits the curve of marginal stability only at r = 0. Both magnetic fields
remain finite and acquire the same value Babel = Bnon = −κ2/3. The Abelian
electric remains finite as well, since the factor (L2 − 1)/r2 is finite, the non-Abelian
electric field however diverges, since the factor Lr/r remains finite but Im (φD/φ)
vanishes.

5.6.4 Z-pole

Z-poles correspond to solutions which have a central charge phase argZ ∈ [−π/2, π/2]
and δ larger than the critical value δ0. The magnetic fields remain finite upon
reaching u = 1. As shown in appendix B, the factor Re τ/Imτ goes to zero for
u → 1, so the Abelian electric field vanishes. It is also shown in the appendix that
Re (φD/φ)
Im (φD//φ) → tanα, so the non-Abelian field approaches a finite value.

For the critical δ value δ = δ0, the point u = 1 is reached exactly at the bouncing
point. Thus the factor L2 − 1 becomes zero at this point and causes the Abelian
magnetic field to also vanish. This holds also for the Abelian electric field, but it is
zero due also to the Re τ/Imτ factor. The behavior of the non-Abelian fields does
not differ from the noncritical case.
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Figure 5.5: The magnetic and electric fields of a Z-pole (δ > δ0), a bouncing solution
(δ < δ0) and a critical Z-pole (δ = δ0).

5.6.5 XZ-pole

When α = ±π
2 and δ > δ0 = 0, the solution is at the same time a Z-pole and an

X-pole, i.e. it reaches u = 1 when X = 0. In this case the magnetic fields are the
same as for X-poles, i.e. the Abelian magnetic fields remains finite, the non-Abelian
field vanishes. The Abelian electric field vanishes as for a Z-pole. The non-Abelian
field must be checked separately, since we cannot use the same limit as before. The
dual field φD (being essentially the central charge) is for α = ±π

2 real, so we need to
study only the limit −Lr/r Re φ/Imφ. The nontrivial part of this is

lim
u→1

Lr

Imφ
= lim

u→1

Lrr

Im (φr)
= ±

√
2
r2Lrr

1 − L2

∣∣∣∣
r=r∗

,

where r∗ is the point where u = 1 is reached and is given by (5.19). Inserting this
and the value φ(u = 1) = 4/π in the expression for the non-Abelian field, we find

the value ±
√

2 4
π

√
1+κ2r2

∗

r∗
.

The case δ = 0 must be treated separately. In this case the solution ends at
r = 0, at u = 1 and at the same time X = 0. As in the case of an X-pole with zero
δ the magnetic fields acquire the same value. The Abelian electric field vanishes as
for any Z-pole. We see from the calculation of the non-Abelian electric field of an
XZ-pole that it diverges as 1/r.
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Figure 5.6: The magnetic and electric fields of an XZ-pole (δ > 0), a bouncing
solution (δ < 0), and a critical XZ-pole (δ = 0)).
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5.7 Energy Density

The energy of a configuration is given by the Hamiltonian

H =
1

8π
Im

∫
d4xFAB(EA

i E
B
i +BA

i B
B
i + 2∇iφ

A∇iφ̄
B), (5.26)

so the energy density is

E =
1

8π
ImFAB(EA

i E
B
i +BA

i B
B
i + 2∇iφ

A∇iφ̄
B).

For a BPS solution we see that the electromagnetic field and the Higgs field each
carry one half of the total energy. We can use the BPS equation to substitute for the
Higgs field and regard just the double of the electromagnetic energy. In the radial
ansatz, the coupling FAB , the electric and magnetic fields split in Abelian and non-
Abelian components. The energy density splits into an Abelian and a non-Abelian
part as well, with τ being the Abelian coupling and φD

φ the non-Abelian coupling

E =
1

4π
Imτ(B2

abel + E2
abel) +

1

2π
Im φD

φ
(B2

non + E2
non), (5.27)

the Abelian and non-Abelian fields are given in eq. (5.21) and (5.22).
The t’Hooft-Polyakov monopole is the classical case with F = 1

2τφ
AφA (and δ = 0).

The Abelian and non-Abelian couplings are the same, furthermore this coupling is
fixed by its asymptotic value at infinity τ(u0). Thus the classical energy is

E =
Imτ

4π

(
B2

abel + E2
abel + 2B2

non + 2E2
non

)
. (5.28)

The Hamiltonian can be written as a term including the square of the BPS
equation H0 and a total derivative term, which can be rewritten as a surface term

H = H0 −
√

2Im eiα

∫
d3x

(
1

4π
∇i(B

i
Aφ

A
D) + ∇i(Π

i
Aφ

A)

)
=

= H0 −
√

2Im eiα

∫

S2
∞

d2Si

(
1

4π
Bi

Aφ
A
D + Πi

Aφ
A

)
+

+
√

2Im eiα

∫

S2
r0

d2Si

(
1

4π
Bi

Aφ
A
D + Πi

Aφ
A

)
.

According to the definition of the electric and magnetic quantum numbers, the sur-
face term at infinity is equal to −(nmaD + nea). We can use the relation between
the magnetic field and the conjugate momentum

4πnmΠA
i − neB

A
i = 0

to write the third term only in terms of the magnetic field

H = H0 +
√

2Im eiα(nmaD + nea)+

+
√

2Im eiα

∫

S2
r0

d2SiB
i
A

1

4π

(
φA

D +
ne

nm
φA

)
.
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According to our ansatz, the magnetic field splits into an Abelian and a non-Abelian
part BA

i = eieA(L2 − 1)/r2 + (δA
i − eieA)L′/r and the scalar fields are pure Abelian

φA = φeA. Multiplying these by d2Si = dΩr2ei leaves only the Abelian terms

H = H0 +
√

2Im eiα(nmaD + nea)+

+
√

2Im eiα

∫

S2
r0

1

4πnm
dΩ(L2 − 1)(nmφD + neφ) =

= H0 +
√

2Im eiα(nmaD + nea)+

+
√

2Im eiα 1

nm
(L2 − 1)(nmφD + neφ)

∣∣∣∣
r=r0

.

The second term includes the asymptotic value of the central charge Z0 = Z(r =
∞) = nmaD + nea. As for the third term, since the phase of the central charge is
constant, we can rewrite it in much the same way as the second term and we get for
a BPS state (H0 = 0)

H =
√

2|Z(r = ∞)| +
√

2
1

nm
(L2(r0) − 1)|Z(r0)|.

The term L2 − 1 is (up to a factor r2) the reparametrisation term dX/dr. It is
negative for δ ≥ 0 with L → 1 for δ = 0 and r → 0. For negative delta, however,
it can change sign: from negative (at large r) to positive (at small r). This shows
that the third term changes the total energy of the configuration. For Z-poles the
energy of the configuration is lowered for any r larger than the critical value rcr, at
which the point u = 1 (and thus Z = 0) is reached. For X-poles it is lowered for all
r larger than the value at which the curve of marginal stability is crossed and the
BPS equations do not necessarily have to hold any more. For bouncing solutions
the energy is lowered for r larger than the bouncing point, it is increased for smaller
values and tends to infinity for r → −δ.

5.8 Weakly Coupled Monopole Solution

The behavior of the energy dependence enables us a to construct a completely weakly
coupled monopole solution by utilizing the properties of the bouncing solution. If we
choose δ in such a way that the value of u for which the solution turning point is in
the region where we may trust the low-energy effective description, we may cut off the
solution there. As was shown in the previous sections, the Abelian components of the
electric and magnetic field are zero at the turning point and there is no contribution
to the energy from the inner boundary. We may therefore combine the bouncing
solution and a suitable Higgs vacuum to get a solution which is defined for all values
of r. The Higgs vacuum can be chosen as follows: The scalar field φ is constant in
the radial direction, with the value it has at the cut off point

Φ = φ(r0)TR. (5.29)

This is correctly defined everywhere except the origin, where the directional angles
ϑ, ϕ lose their meaning. But we can use a gauge transformation to transform the
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field to say the 3 direction g−1TRg = T3, with g given by

g =

(
cos ϑ

2 −e−iϕ sin ϑ
2

eiϕ sin ϑ
2 cos ϑ

2

)
. (5.30)

The gauge field is chosen to be pure gauge, such that vanishes in the gauge in which
the scalar field points in the 3 direction, i.e. A = −ig−1dg,

A = TΦdϑ+ (TR − T3)dϕ. (5.31)

As before, this form is well defined everywhere except the origin, where we can use
its gauge transformed version. As can be easily checked, ∇iΦ = 0, and this solution
is indeed a Higgs vacuum, see (3.4).

The scalar field, and the Abelian components of the covariant derivative and elec-
tromagnetic fields are continuous at the boundary. The non-Abelian electromagnetic
fields as well as the non-Abelian part of the covariant derivative of the scalar field,
however, jump from a non-zero value outside the boundary to zero inside. The non-
Abelian fields are not invariant under the residual U(1), instead, the U(1) rotates
the angular Θ and Φ components. The non-Abelian fields do not have any charge
associated with them, neither do they contribute to the total energy. They do, how-
ever, contribute to the total energy density. This means that there is a shell-like
discontinuity at the cutoff radius.

5.9 Other Dyons

Several solutions for the quantum numbers (1,−1) are shown in fig. 5.7. Again, we
see the different behavior for Z-poles and X-poles. The dyon (1,−1), resp. (1, 1),
becomes massless at u = −1. At this point the scalar field φ approaches the value
±4/πi; the sign is positive if it approaches u = −1 from the Imu > 0 halfplane and
negative otherwise. Then the value of X at u = −1 is X = ∓4

√
2/π sinα. From this

it follows that for a solution which approaches u = −1 from the lower halfplane, to be
a Z-pole, we must have α ∈ (0, π), corresponding to argZ ∈ (−π

2 ,
π
2 ). From fig. 5.8,

we see that argZ ∈ (−π
2 , 0) is beyond the cut and thus corresponds to an analytic

continuation. We see as well, that indeed solutions starting in the first quadrant hit
the curve of marginal stability at Z = 0 and are thus Z-poles.

Dyons with a higher electric quantum number are only marginally stable and de-
cay upon crossing the curve of marginal stability. We can see from fig. 5.10, 5.9, that
all solutions are X-poles. On the curve of marginal stability it becomes energetically
favorable to decay into three (1, 1) dyons and and two (−1, 0) antimonopoles. These
then move on towards u = ±1 where they become massless.
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Figure 5.7: Solutions for (nm, ne) = (1,−1) and the curve of
marginal stability in moduli space. Solutions which end at u = 1
are Z-poles, the others are X-poles. Z-poles correspond to u0 with
both real and imaginary parts negative.
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Figure 5.8: Solutions for (nm, ne) = (1,−1) and the curve of
marginal stability as well as the branch cut in the central charge
plane.
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Figure 5.9: Solutions for (nm, ne) = (1, 3) and the curve of marginal
stability in moduli space. All solutions hit the curve of marginal sta-
bility and are therefore X-poles. Upon crossing the curve of marginal
stability they decay into (-1,0) antimonopoles and (1,1) dyons.
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Figure 5.10: Solutions for (nm, ne) = (1, 3) and the curve of
marginal stability as well as the branch cut in the central charge
plane. All solutions hit the curve of marginal stability where they
decay into (-1,0) antimonopoles and (1,1)dyons.
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and (1, 1) dyons, which become massless at u = 1, resp., u = −1.



Chapter 6

Analysis of SU(3) Quantum
Monopoles

The analysis done in chapter 5 can be done similarly also for SU(3). The situation
is more involved for SU(3), since there are two moduli u, v and a more complicated
structure of singular points.
Except for the notations and conventions, this chapter is original work, not yet
published.
After briefly defining necessary notations and conventions we derive a system of
first order differential equations for the spatial dependence of the moduli u(r), v(r).
The numerical treatment of the SU(3) period integrals is more complicated than for
SU(2) and is commented on. The structure of the curves of marginal stability are
elaborated and numerical examples shown. Examples of moduli motion are shown in
the end. Since the moduli space is C

2, it is difficult to visualize solutions and curves.
Therefore, we focus on those cases where the problem reduces to C.

6.1 Definitions

In SU(3) differential equations for the moduli u, v can also be found. The derivation
follows the derivation of the first order equation for SU(2) monopoles in section 5.1.
The generalization of most of the formulas given in section 4.5 from SU(2) to SU(3)
is straightforward, but for clarity and future reference, a brief derivation will be given
below.

We use most two bases in our calculations; both are given explicitly in appendix
C. For the classical description, a modification of the radial gauge is the easiest; it
uses the standard basis based on the Gell-Mann matrices TA. On the other hand,
the quantum description is easier in a diagonal gauge with a more symmetric basis
of the Cartan subalgebra Ti. In the classical context, we use the radial gauge more,
whereas in the quantum description we use the symmetric, diagonal basis more. In
order to avoid the introduction of further symbols, we use here and in all following
formulas which refer to the Cartan subalgebra the convention i=1,2 and A=3,8. The
transition from the radial gauge to the diagonal gauge is as follows. We can use the
image of an SU(2) gauge transformation to turn the term r̂sts(β) to t3(β). Explicitly

68
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the action of this gauge transformation is given in terms of the matrix K

Ad(g−1)tj = Kjktk

with K given by

Kij =



1 − 1
2(1 − cos ϑ)(1 + cos 2ϕ) −1

2(1 − cos ϑ) sin 2ϕ sinϑ cosϕ
−1

2(1 − cos ϑ) sin 2ϕ 1 − 1
2(1 − cos ϑ)(1 − cos 2ϕ) sinϑ sinϕ

− sinϑ cosϕ − sinϑ sinϕ cos ϑ


 .

(6.1)

So the action of the gauge on the terms which appear in the formulas for BPS
monopoles (3.18) is

Ad(g−1)r̂sts = t3

Ad(g−1)(δs
i − r̂sr̂i)ts = c1i t1 + c2i t2 =



(1 − 1
2(1 − cos ϑ)(1 + cos 2ϕ))t1 − 1

2(1 − cos ϑ) sin 2ϕt2

−1
2(1 − cos ϑ) sin 2ϕt1 + (1 − 1

2(1 − cos ϑ)(1 − cos 2ϕ))t2

− cosϕ sinϑt1 − sinϕ sinϑt2


 (6.2)

In this gauge the magnetic field is, in terms of the Abelian and non-Abelian compo-
nent

Bi = Babelr̂
it3 +Bnon(c1i t1 + c2i t2).

The Abelian and non-Abelian fields are the same as for SU(2), (5.21), (4.37). For
large r only the Abelian part survives and goes as −1/r2. This differs in sign from
(3.15) and following.
The fields fields φ1, φ2 described in section 4.7, are the coefficients for the scalar field
Φ in the diagonal basis

Φ = φ1T1 + φ2T2 =




φ1 0 0
0 φ2 − φ1 0
0 0 −φ2


 . (6.3)

The same holds for the dual field ΦD.
Expression (3.18) for the scalar field Φ can be rewritten as

Φ =
(
hA + (φ− ~h · ~β)β∗A

) 1√
3
M−1

Ai Ti

=
(
ai + (φ− ~h · ~β)

nm,i

2

)
Ti, (6.4)

where we use

β∗B = nm,jMjB

√
3

2
(6.5)

since the roots α1 and α3 are proportional to the columns of M .
As is shown explicitly later in section 6.4, all terms of FAB with at least one

index outside the Cartan subalgebra are zero. The form of the canonical momentum
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is formally the same as for SU(2), given in (4.26); thus for large r it also lies in the
Cartan subalgebra.
We define the electric and magnetic quantum numbers as

ne1a1 + ne2a2 = −2

∫

S∞

dSiΠiAφ
A (6.6)

nm1aD1 + nm2aD2 = − 1

2π

∫

S∞

dSiBiAφD,A. (6.7)

The formula differs by a factor 2 from the formulas for SU(2) given in section 4.5,
so as to comply with the definitions used in [21,24]. This also requires a fixed choice
of simple roots as described in section 3.2. We use here the roots α1 and α3 (C-4)
as simple roots.

The central charge is given as

Z = nm,1aD,1 + nm,2aD,2 + ne,1a1 + ne,2a2, (6.8)

so, we choose as for SU(2) the constant α to be

α =
π

2
− argZ. (6.9)

This choice gives the correct mass of the monopole m =
√

2|Z|.
Similarly, as for SU(2), we can show that the phase of the generalized central charge
Z(r) = nm1φD1 + nm2φD2 + ne1φ1 + ne2φ2 is constant. The procedure is almost the
same as for SU(2), but we shall give here explicitly the intermediate steps. For the
Abelian terms of the magnetic field and the conjugate momentum, we can find their
asymptotic behavior from (6.6)

Bi ≈ − r̂i

r2
(nm1T1 + nm2T2) (6.10)

Πi ≈ − r̂i

4πr2
(ne1T1 + ne2T2) (6.11)

It follows from the BPS equations (4.28) by simple manipulations that

Bi = −
√

2eiα∇iΦ (6.12)

Πi =

√
2

4π
eiα∇iΦD, (6.13)

these relations are analogous to (4.39), (4.40). From these, we find for the compo-
nents in the Cartan subalgebra that

√
2∇ie

iα(nm1φD1 + nm2φD2 + ne1φ1 + ne2φ2) =

4πnm1Πi1 + 4πnm2Πi2 − ne1Bi1 − ne2Bi2. (6.14)

Using further the Gauss law ∇iΠiA = 0 and the constraint ∇iB
A
i = 0, we get

√
2eiα∇i∇iZ(r) = 0.

The asymptotic form of the fields at infinity and the limit value at infinity imply
that the central charge has a constant phase

√
2∇ie

iαZ(r) = 0.
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6.2 Differential Equation for Moduli

We shall now derive a differential equation for the moduli u, v. The procedure is
similar to the derivation of the SU(2) equation (5.7). We shall start with (6.14)
and insert the explicit formulas for the magnetic field and the conjugate momentum.
Explicitly the magnetic field component in Cartan subalgebra is

Bi
Cartan = r̂iBabelt3 = r̂iBabel

~β∗ ~H = r̂iBabel
1√
3
β∗AM

−1
AkTk,

where M is the transition matrix (C-7). Thus we get

Bi
Cartan,k = r̂iBabel

nm,k

2
.

The conjugate momentum transforms in the same way as φD, (C-8), inserting the
definition we find

Πi
Cartan,k = MkAΠi

A = − r̂i

4π
√

3
MkARe

(
(Babel + iEabel)FAB

~β∗B

)

= − r̂i

4π
Re ((Bab + iEab)τkj)

nm,j

2
.

Here we used the fact that for nonzero terms both indices of FAB must be in the
Cartan subalgebra and relations (6.5) and (C-9) Inserting everything in (6.14) we
find

Re ((Babel + iEabel)nm,jτjknm,k) +Babelne,knm,k = 0,

which is the SU(3) analogue of (5.3). From this we find immediately, using the
explicit form of the electric and magnetic fields, the analogue of (5.6)

br =
1 − L2

r2
ne,knm,k + Re nm,jτjknm,k

Imnm,jτjknm,k
.

Inserting this in the BPS equation for the Abelian component (3.11), we find

√
2eiαφr =

1 − L2

r2
i
ne,knm,k + nm,j τ̄jknm,k

Imnm,jτjknm,k
.

Differentiating (6.4) with respect to r, we see that φi,r = nmiφr/2; combining this
with the chain rule, we find a first order differential equation for the moduli u, v

(
du
dr
dv
dr

)
=

(
∂u
∂φ1

∂u
∂φ2

∂v
∂φ1

∂v
∂φ2

)(
nm1

nm2

)
φr

2
. (6.15)

Comparing this with (5.7), we see that this is analogous to the SU(2) case. As for
SU(2) we can use the factor 1−L2

r2 for a reparametrisation r → X(r), with X(r) given
in (4.44). Also, we can find equations for the phase and absolute value of the central
charge. The central charge evolves according to

dZ

dX
=
ie−iα

√
2

|ne,knm,k + nm,jτjknm,k|2
Imnm,jτjknm,k

. (6.16)
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Therefore the phase of the central charge is constant

arg(Z) =
π

2
− α (6.17)

and the absolute value increases with increasing X

d|Z|
dX

=
1√
2

|ne,knm,k + nm,jτjknm,k|2
Imnm,jτjknm,k

. (6.18)

This is the same behavior as for SU(2), constant phase and an attractor at Z = 0.
Since the reparametrisation is also the same, most of the general facts about the
different types of behavior given in sections 5.2-5.4 are the same.

6.3 Numerical Solutions

As shown in appendix E, the period integrals φ1, φ2, φD,1, φD,2 and their derivatives
are given in terms of the Appell function F4 [24,40]. For values outside the radius of
convergence, analytic continuations must be used, [40]. Unfortunately,not very many
explicit formulas are available and the numerical calculation as a double sum is quite
complicated because different representations must be used for different ranges of
u,v. Rather than working out all representations for different cases, we chose to
calculate the period integrals and their derivatives as contour integrals using their
integral representation. We keep the notation from [24]. As said in section 4.6,
all period integrals and their derivatives can be written as contour integrals of the
holomorphic functions f , fu, fv respectively (4.49), (4.50):

f =
i

2π

x(3x2 − u)√
(x3 − ux− v)2 − Λ6

fu =
i

2π

−x√
(x3 − ux− v)2 − Λ6

fv =
i

2π

−1√
(x3 − ux− v)2 − Λ6

. (6.19)

The branch cuts of f and the cycles are chosen as in fig. 4.6. As in SU(2), the scale
parameter Λ is set to one.

Roots

The equation of the elliptic curve (4.51) splits into a product of two cubic terms

y = (x3 − ux− (v + Λ))(x3 − ux− (v − Λ)).
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The roots of a cubic polynomial can be found analytically using the standard Cardan
formula. The roots of a monic cubic polynomial x3 + ax2 + bx+ c , see e.g. [41]

z1 = −1

3


a+

3

√
R+

√
R2 − 4Q3

2
+

3

√
R−

√
R2 − 4Q3

2




z2 = −1

3


a+ e−i2/3π 3

√
R+

√
R2 − 4Q3

2
+ ei2/3π 3

√
R−

√
R2 − 4Q3

2




z3 = −1

3


a+ ei2/3π 3

√
R+

√
R2 − 4Q3

2
+ e−i2/3π 3

√
R−

√
R2 − 4Q3

2


 , (6.20)

where

R = 2a3 − 9ab+ 27c Q = a2 − 3b.

In our case R = 27(v ± Λ), and Q = 3u; thus the term under the square root is
proportional to the singular curve 27(v ± Λ)2 − 4u3. The roots of the elliptic curve
are chosen so that in the limit v → 0, u→ ∞ they give

e1 = −√
u+

1

2

v

u
− 1

2

Λ3

u
e2 = −√

u+
1

2

v

u
+

1

2

Λ3

u

e3 = −v
u
− Λ3

u
e4 =

v

u
− Λ3

u

e5 =
√
u+

1

2

v

u
− 1

2

Λ3

u
e6 =

√
u+

1

2

v

u
+

1

2

Λ3

u
(6.21)

The roots on the left are roots of the polynomial with v − Λ, on the right those of
the polynomial with v + Λ.

Cycles

As we move through moduli space, the roots ei move as well and care is needed in
the cycle algorithm. The simplest way to create a cycle is to take the points that
we want to encircle and create a rectangular box, e.g. oriented parallel to the line
which connects them. However, as the branchcuts move, we can reach points where
this does not give the correct cycle anymore. More precisely, a function in this way,
would not be continuous. This happens for both dual functions φD1, φD2, but the
box-like path works fine for the integrals a1, a2.
We will illustrate this in the following example for φD2. We shall start at u = 3

and v = 0 and move along the real v axis with u fixed. The branchcuts and cycles
(both correct and naive) are shown in fig. 6.1. For v ∈ [0, 1], i.e. up to the closer
singular, curve all six roots are real. As v increases, the branchcuts e1 − e2 and
e3 − e4 move closer to each other, until they touch at v = 1 when the roots e2 and
e3 become degenerate. For v ∈ [1, 3] increasing, the branch cut between e5 and e6
becomes shorter while the the roots e2, e3 acquire an imaginary part of the same size
but opposite sign and move away from each other (and the real axis). The roots e1
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Figure 6.1: The roots ei, i = 1, . . . , 6 for u = 3 and v ∈ [0, 5] in the x-plane. The
branchcuts are shown in red. The integration path is green, if the correct cycle is
different it is shown in blue.

and e4 move closer to each other until they coincide at v = 3 on the second singular
curve. For v > 3 the branchcuts e1 − e2 and e3 − e4 move symmetrically away from
the real axis and their size decreases. Obviously for v > 3, the simple naive path
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does not work anymore.
One possibility is to carefully define a different path, which would avoid the cuts and
correctly encircle the roots e2 and e3 so that as we increase v the cycle is continu-
ously deformed. However, we found this method quite cumbersome and difficult to
implement in a fool-proof way. Instead we choose to use a combination of the naive
path which is formed by a box around e2,e3 (except for points where roots become
degenerate) and the integrals a1, a2. For the case, above the decomposition is shown
in fig. 6.2. Thus we conclude that for the cycles (and integrals along them) the
following relation holds

β2 = γ − 2α2.

= ++

Figure 6.2: Decomposition of a more complicated cycle into simpler cycles and paths.
In the example described in the text the cycle αD2 can be expressed in terms as
αD2 = γ − 2α2, where γ is the auxiliary cycle. The third branchcut is omitted for
simplicity.

There remains another problem: if we are given a set of roots it is by far not
obvious which path to choose so that the results will form a continuous function.
If we stay in a reasonable region of the moduli space, we can hope to work things
out correctly but one must always watch out for possible failures. Instead we choose
to perform explicitly the “continuous deformation”, i.e. we start at a known form
of the path, given in fig. 4.6 and slowly move toward the desired point. At each
step we check the relation between the path in the previous step and the current
path. If, as in the case above, one of the roots “gets in the way” of our path we
can compensate for that by adding/subtracting a suitable combination of a1 (for the
branchcut e5 − e6), (a2 for the branchcut e1 − e2) and a1 − a2 (for the branchcut
e3 − e4). The last path around e3 − e4 can be pulled across infinity and split into
the two other paths, see fig. 6.3.
In some cases some of the roots lie on a single straight line and no box-like path

which would encircle only the desired points can be found.
Again, we can create an auxiliary path, which encircles a different pair of roots,

and write the desired cycle as a combination of this auxiliary path and αi’s, see fig.
6.4. The orientation comes up for a change of sign as well as the change between
full line and dashed line, i.e. between the two sheets. Therefore we can change the
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e1 e2 e5 e6e3 e4

e1 e2 e5 e6e3 e4

-α2 -α1

Figure 6.3: The cycle around the roots e3, e4 (top) can be deformed and split into
three paths - around e1, e2, around e5, e6 and around infinity (middle), the loop
around infinity can be pulled to a point leaving the cycles α1, α2.
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e1

e2
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e4
= +

Figure 6.4: The cycle β2 (violet) can be deformed and split into an auxiliary path
γ encircling the pair (e1, e4) (black) and small auxiliary paths encircling each one of
the four roots ei, i = 1, . . . , 4 (orange).

dashed paths into solid paths going in the opposite direction and combine them with
the original ones to form the cycle −α2 and the path around e3, e4. The result is
then the relation aD2 = γ + α1 + 2α2. The other cases can be worked out in the
same way.
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Integration

For the integration of the functions (6.19) along the chosen path, Simpson’s adaptive
rule is used, which is one of the simplest and most general methods. It is based on
Simpson’s rule for integration of a function f(x) over an interval [a, b]

∫ b

a
f(x)dx =

|b− a|
3

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
.

The adaptive method splits the whole interval into two symmetric subintervals, which
are each integrated according to Simpson’s rule. This step is iterated until a specified
precision is reached.

6.4 Curves of Marginal Stability

The derivation of the BPS equations assumed that Im FAB is positive definite. This
corresponds to several conditions, some of which define a separation of the moduli
space in two parts, the border line is called curve of marginal stability. We will
show in the following explicitly the form of the derivatives of the effective action
FAB and give all related formulas for easy reference. The derivatives were derived
independently from [42], which uses a different and more general approach. The
second derivative matrix FAB is defined as

FAB =
∂2L

∂φA∂φB
.

Recall that we used the gauge invariant combinations of the field in the derivation of
the SU(2) analogue (4.30). Whereas in SU(2) there is only one such object

∑
A φ

AφA,
in SU(3) there are two such objects, the Weyl invariant Casimir variables defined in
(4.45); in the standard basis, they can be written as

u =
1

2
TrΦ2 =

1

4
δABφ

AφB

v =
1

3
TrΦ3 =

1

6
dABCφ

AφBφC , (6.22)

where dABC is the antisymmetric tensor given in (C-3). Then the most general form
of FAB is

FA =
1

2
∂uFφA +

1

2
∂vFdABCφ

BφC

FAB = ∂uF
1

2
δAB + ∂vFdABCφ

C + +
1

4
∂u∂uFφAφB+

+
1

4
∂u∂vF(φAdBCD + φBdACD)φCφD+

+
1

4
∂v∂vFdACDdBEFφ

CφDφEφF . (6.23)

In the gauge used in section 6.1, where Φ lies only in the Cartan algebra, i.e. the
only nonzero components of Φ are φ3 and φ8, we find that for indices outside the
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Cartan subalgebra FA is zero and FAB is diagonal. The nonzero terms of FA = φD,A

are

φD,3 =
1

2
∂uFφ3 +

√
3

6
∂vFφ3φ8

φD,8 =
1

2
∂uFφ8 +

√
3

12
∂vF

(
(φ3)2 − (φ8)2

)
. (6.24)

This is analoguous to (4.29) for SU(2). The first terms are the direct analogues
(differing only by a factor 1/2), the second terms do not have an analogue since
there is no analogue of v and dABC for SU(2). The explicit form of φD,i in terms of
φi can be found using (C-8)

φD,1 = (2φ1 − φ2)(∂uF + ∂vFφ2)

φD,2 = (2φ2 − φ1)(∂uF − ∂vFφ1), (6.25)

obviously it is more symmetric.
As for FAB , the terms on the diagonal are pairwise the same for the index pairs
(1,2), (4,5) and (6,7) associated with each of the three roots αi :

F11 = F22 =
1

2
∂uF +

√
3

6
∂vFφ8

F44 = F55 =
1

2
∂uF + ∂vF

(
1

4
φ3 −

√
3

2
φ8

)

F66 = F77 =
1

2
∂uF − ∂vF

(
1

4
φ3 +

√
3

2
φ8

)
(6.26)

These terms are analogous to the F ′/φ term in SU(2) (4.30). Since they contain only
first derivatives, they can be rewritten in terms of the dual fields φD,1, φD,2 using
(6.24):

F11 = F22 =
1

2

φD,1

2φ1 − φ2

F44 = F55 =
1

2

φD,1 + φD,2

φ1 + φ2

F66 = F77 =
1

2

φD,2

2φ2 − φ1
(6.27)

The terms lying in the Cartan subalgebra are just a transformation of the period
matrix τij = ∂φD,i/∂φj via (C-9).

When we use the embedded t’Hooft Polyakov monopole, we restrict ourselves, by
choosing one specific root, to a certain subspace of the algebra. Therefore, depending
on our choice of roots(i.e. magnetic numbers) we should use only the corresponding
condition. The three roots and the corresponding subspaces are given in and above
(C-4). In the diagonal gauge, the curves of marginal stabilities for the three different
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roots are

C10 : Im φD,1

2φ1 − φ2
= 0 (6.28)

C11 : Im φD,1 + φD,2

φ1 + φ2
= 0 (6.29)

C01 : Im φD,2

2φ2 − φ1
= 0. (6.30)

As can be seen from the explicit form of the fields (E-14), all three hyperplanes
coincide at v = 0.

6.4.1 Large |v| region

It was argued in [42] that for large v the topology of the curves of marginal stability
should be S1 × C, because the theory should behave as a copy of SU(2). We will
describe this explicitly on our numerical solution for C01.
The region will be chosen as Re v > 1 so that the Douglas-Argyres Z3 vacua u = 0,
v = ±1 lie on the boundary. They can be found to lie on C01, as well as the Z2

vacua u = 3
√

27/4 and u = 3
√

27/4 exp (±2/3iπ). The singular curves (4.52) where
the discriminant becomes zero and particles become massless lie on the curve of
marginal stability as well. Due to the expected topology, we choose a description
which views the curve of marginal stability C01 on slices of constant v, focusing on
the real part of v and its increase and treating the imaginary part of v as a fixed
parameter. In this picture, the singular curves are for each slice only discrete points.
For v real, larger than 1, C01 in the u-plane is approximately an ellipse with the
major semiaxis on the positive real axis, see fig.6.5. In fact the major semiaxis is
formed by the line which connects two points of the singular curve (4.52).
For a positive imaginary part of v we find that the position of the singular curve
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Figure 6.5: The curve of marginal stability C for magnetic numbers (0, 1, 0, 0) re-
stricted to v real, positive. The singular lines are shown in green.

points changes, see fig. 6.6. The curve of marginal stability C01 moves towards the
upper half of the u-plane (i.e. the imaginary part increases). The orientation of the
semiaxis changes as well - C01 tilts toward downwards.
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Figure 6.6: The curve of marginal stability C for magnetic numbers (0, 1, 0, 0) re-
stricted to Imv = 1 (left) and Imv = 3 (right), for Re v positive. The singular
lines are shown in green.

For Imv negative, the opposite happens, i.e. C01 moves into the lower half of the
u-plane and turns upwards, see fig. 6.7.
Several curves of marginal stability are shown in fig. 6.8 for illustration.
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Figure 6.7: The curve of marginal stability C for magnetic numbers (0, 1, 0, 0) re-
stricted to Imv = −1 (left) and Imv = −3 right) for Re v negative. The singular
lines are shown in green.

A similar situation can be seen also for Re v negative. In this case, for real v or a
positive imaginary part of v, the curve C01 is oriented along the line at an angle 2/3π
with respect to the real u-axis. For a negative imaginary part, the curve is along a
a line at an angle −2/3π. As can be seen in fig. 6.9, 6.10, 6.11, a positive imaginary
part increases the phase and decreases the orientation whereas a negative imaginary
part does the opposite. Several curves of marginal stability are shown together in
fig. 6.12 for better comparison.
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Figure 6.8: The curve of marginal stability C for magnetic numbers (0, 1, 0, 0), Re v
positive and Imv = 3, 1, 0,−1,−3 (from top to bottom).
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Figure 6.9: The curve of marginal stability C for magnetic numbers (0, 1, 0, 0) re-
stricted to v real negative. The singular lines are shown in green.
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Figure 6.10: The curve of marginal stability C for magnetic numbers (0, 1, 0, 0) re-
stricted to Imv = 1 (left) and Imv = 3 (right), for Re v negative. The singular
lines are shown in green.
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Figure 6.11: The curve of marginal stability C for magnetic numbers (0, 1, 0, 0) re-
stricted to Imv = −1 (left) and Imv = −3 (right), for Re v negative. The singular
lines are shown in green.
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Figure 6.12: The curve of marginal stability C for magnetic numbers (0, 1, 0, 0) and
Imv = 3, 1, 0,−1,−3 (from top to bottom), for Re v negative.
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This behavior can be quantified by looking at the asymptotic behavior of the
singular curve points. The singular curve in the u-plane for a fixed v, is formed by six

points, with modulus |u| = 3

√
27
4 |v ± 1|2 and phase ϕ = 2

3arg(v±1), 2
3arg(v±1)± 2

3π.

Call the pair without the factor 2
3π u±. For large v these points will behave as

u± ≈ 3

√
27

4
v2/3

(
1 ± 2

3
v−1

)
.

Thus the center of the approximate ellipse S = 1
2(u+ + u−) and the major semi-axis

a = 1
2 |u+ − u−| go as

S ≈ 3

√
27

4
v2/3

(
1 − 1

9
v−2

)
r ≈ 3

√
2|v|−1/3.

From this we see that the the curve C01 moves away from the origin as |v|2/3 and
under an angle of 2

3arg(v), the extent of the curve decreases proportionally to |v|−1/3.
This behavior was verified numerically by fitting the curve C01 for a given v by an
ellipse. We find that the predicted behavior for the center of the ellipse S, its major
semi-axis a and its orientation are in good agreement (taking into account the fact
that the curve is not a perfect ellipse). For large v, the orientation differs from the
predicted one by 10−4, the absolute value of the center by 10−3, its phase by 10−6

and the major semi-axis by 10−3. The minor semi-axis is found to decrease propor-
tionally to the major semi-axis, in fact the ratio of the minor and major semi-axis
approaches the value 0.86. This value is approximately the same as the one we would
find for the su(2) case shown in fig. 5.3.

6.5 Motion in moduli space

The moduli space of su(3) is C
2, with "forbidden" regions - those inside the curves

of marginal stability that cannot be described by our BPS solutions. The motion
in moduli space is governed by eq. (6.15). The description of a general motion in
four-dimensional space is difficult to view; for this reason we will give two examples
in which the solutions are restricted only to a plane in C

2.

6.5.1 Zero v plane

For v = 0, the functions φD1 and φD2, resp. φ1 and φ2, coincide; from which it
follows that the three possible curves of marginal stability C10, C01 and C11 also
coincide. From the explicit form of the derivatives given in (E-16) it follows that
their derivatives also satisfy the relation ∂uφ1 = ∂uφ2, ∂vφ1 = −∂vφ2 and likewise
for the duals. For the monopole (1, 1, 0, 0), we find from (6.15) that the derivative dv

dr
vanishes. Thus if we choose the value at infinity v0 as zero, the moduli v will remain
zero and the motion is only in the u-plane. The singular curves coincide, leaving
only three, the Z2 vacua. As can be seen in fig. 6.13, the situation is very similar to
su(2), which is described in detail in section 5.2-5.4. We find again solutions which
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Figure 6.13: The curve of marginal stability C for magnetic numbers (1, 1) restricted
to the v = 0 and solutions for different initial values. The green lines correspond to
α = ±π/2, the red lines are Z-poles and the blue lines are X-poles.

hit the curve of marginal stability at one of the Z2 vacua (Z-poles), solutions which
hit the curve of marginal stability somewhere else (X-poles), and the border between
these two regions is given by solutions with a phase of the central charge α = ±π/2
(XZ-poles).

6.5.2 Real u,v plane

A nice example involving also the moduli v is the plane (Re u,Re v). In the region
below the singular curve, see fig. 6.14, the dual period φD2 is purely imaginary
whereas the periods φ1, φ2 are purely real. Thus for a monopole (0,1,0,0) the central
charge has a zero phase and the solution remains in this plane. The curve of marginal
stability C01 is shown with several solutions in fig. 6.14. All solutions are Z-poles.
The region between the two parts of C01 cannot be accessed, since the BPS equations
need not hold anymore. In the region closer to the real v axis, there are solutions,
but they are no longer restricted to (Re u,Re v) and they have been omitted for
clarity.
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Figure 6.14: The curve of marginal stability C for magnetic numbers (0, 1) restricted
to u, v real and solutions for different initial values. All solutions shown are Z-poles.



Chapter 7

Conclusions

This work focused on studying the numerical behavior of period integrals and moduli
in quantum corrected N = 2 supersymmetric Yang-Mills theory. Two gauge groups
were studied: SU(2) and SU(3). These were chosen because they are the simplest
non-Abelian groups with only one or two moduli, and because they had already been
studied extensively in literature.

For SU(2), a first order differential equation was found which governs the spatial
behavior of the modulus u. The whole analysis is valid only if the imaginary part of
the matrix of second derivatives of the prepotential ImFAB is positive definite. This
implies that we must stay outside the curve of marginal stability, which separates
two regions with different spectra. Solutions were studied both numerically and
analytically; the main focus was on the monopole solution with magnetic quantum
number equal to 1 and zero electric quantum number. The differential equation is
found to be an attractor equation, which means that for a given choice of electric and
magnetic quantum numbers all solutions end at one single point in moduli space.
Different types of behavior were found, depending on the choice of the free parameter
δ and the initial condition u0 = u(∞). The value of u0 determines the overall
shape of the solution in moduli space. It determines the phase of the central charge
and whether the solution hits the curve of marginal stability (where our description
ceases to be valid) or whether it goes all the way to the attractor. The value of δ
determines the parametrisation of the solution with respect to the spatial parameters.
For particular values the parametrisation can change its direction and the solution
goes back on the same curve. All types of solutions, including their combinations,
were described together with the electric and magnetic fields and the energy density.
A special solution was identified which allows us to cut off the BPS monopole at a
given radius and put a Higgs vacuum bubble inside.

For SU(3) there are two moduli, i.e. the moduli space is C
2. This increases the

complexity of all equations and makes any visualization almost impossible. Therefore
we focused on those examples that could be fairly easily visualized in R

3. The curves
of marginal stability were found and studied numerically, showing how for large values
of one of the two moduli the image of SU(2)’s curve of marginal stability appears. A
system of two differential equations was found for the moduli. These equations have
a similar structure to the SU(2) moduli equation: they are also attractor equations

87
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and require the phase of the central charge to remain constant (which is a well-
known result in SU(2)). The parametrisation involved is the same as in SU(2), so
most of the analysis of the different solution types in SU(2) carries over to SU(3). For
illustration, two examples were chosen such that the solution stays within a plane in
the moduli space.



Appendix A

The hypergeometric and Appell
functions

In this appendix we shall give briefly a few facts about the hypergeometric function
and the Appell function, concentrating only on those relations that were used in our
calculations. The hypergeometric function occurs for SU(2) solutions and also in
certain limits of the Appell function, which is important for the solutions of SU(3).
Detailed treatments can be found in [40, 43, 44].

Hypergeometric function

The hypergeometric series is given by

F (a, b, c, z) =
∑

n=0

(a)n(b)n
(c)n(1)n

zn (A-1)

for c 6= 0,−1,−2, · · · . Here, (a)n is the Pochhammer symbol

(a)n =
Γ(a+ n)

Γ(a)
.

It is a solution of the Riemann equation

z(1 − z)
d2

dz2
f(z) + [c− (a+ b+ 1)z]

d

dz
f(z) − abf(z) = 0. (A-2)

The hypergeometric function is the analytic continuation of the hypergeometric se-
ries. The solution of the Riemann equation can be written in terms of the six so-called
Kummer solutions, which can be found in the literature mentioned above. In our cal-
culations we often need the behavior of the hypergeometric function at the singular
points of the Riemann equation: z = 0, 1 and infinity. These are given by

F (a, b, c, 0) = 1 (A-3)

F (a, b, c, 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c − b)
. (A-4)

89
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The asymptotic behavior for z → ∞ in the special case b = a+m with m integer, is
given by the following series

F (a, b, c, z) =
Γ(c)

Γ(a+m)

[
(−z)−a−m

Γ(c− a)

∞∑

n=0

(a)n+m(1 − c+ a)n+m

n!(n+m)!
z−n (A-5)

[log(−z) + hn] + (−z)−a
m−1∑

n=0

Γ(m− n)(a)n
Γ(c− a− n)n!

z−n

]
, (A-6)

the coefficients are given by

hn = ψ(1 +m+ n) + ψ(1 + n) − ψ(a+m+ n) − ψ(c− a−m− n),

where ψ is the logarithmic derivative of the Γ-function ψ = d log Γ(z)/dz. Further-
more we used the relations

Γ(z)Γ(1 − z) =
π

sinπz
ψ(1) = −γ

ψ(z) = ψ(1 + z) − 1

z

ψ

(
p

q

)
= −γ − log q − π

2
cot

πp

q
+

n≤ q
2∑

n=1

′ cos 2πnp

q
log

(
2 − 2 cos

2πn

q

)

p, q ∈ N, p < q

where the prime in the last relation denotes that if q is even the last term in the sum
should be multiplied by 1

2 .
The derivative of the hypergeometric function can be written in terms of a hyperge-
ometric function with shifted parameters

d

dz
F (a, b, c, z) =

ab

c
F (a+ 1, b + 1, c + 1, z). (A-7)

There are many relations that relate hypergeometric functions with parameters
shifted by ±1, or functions with arguments z, 1/z, 1− z, 1/(1− z), z/(1− z), 1− 1/z.
We shall list only those that were used in the text

0 = cF (a, b− 1, c, z) + (a− c)zF (a, b, c + 1, z)+

+ (z − 1)F (a, b, c, z) (A-8)

F (a, b, c, z) = (1 − z)−aF

(
a, c− b, c,

z

z − 1

)
(A-9)

F (a, b, c, z) =
Γ(c)Γ(b− a)

Γ(c− a)Γ(b)
(−z)−aF

(
a, a+ 1 − c, a+ 1 − b,

1

z

)
+

+
Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
(−z)−bF

(
b+ 1 − c, b, b+ 1 − a,

1

z

)
(A-10)
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For some special values of the parameters, the hypergeometric function reduces to
other functions. E.g. the relation between elliptic integrals and the hypergeometric
function is useful for the simplification of the SU(2) periods

E(k) =
π

2
F (

1

2
,−1

2
, 1, k2)

K(k) =
π

2
F (

1

2
,
1

2
, 1, k2) (A-11)

Appell functions

There are several generalizations of the hypergeometric function for two variables;
in this work we need only the Appell function F4(a, b, c, c

′, x, y), which is given as a
series by

F4(a, b, c, c
′, x, y) =

∞∑

m=0

∞∑

n=0

(a)m+n(b)m+n

(c)n(c′)m(1)n(1)m
xnym. (A-12)

This reduces to the hypergeometric function if one of the two arguments x, y becomes
zero. Furthermore, the double sum can be reorganized

F4(a, b, c, c
′, x, y) =

∞∑

k=0

(a)k(b)k
(c)k(1)k

F (a+ k, b+ k, c′, y)xk (A-13)

with an analogous relation with x, c and y, c′ interchanged. From the form of F4 it can
be easily seen that its derivative is again an F4 function, with different parameters

d

dx
F4(a, b, c, c

′, x, y) =
ab

c
F4(a+ 1, b+ 1, c+ 1, c′;x, y),

and an analogous relation for y. The region of convergence is given by |√x|+|√y| < 1.
There is a relation analogous to (A-10), which is used in the text

F (a, b, c, c′, x, y) =
Γ(c′)Γ(b− a)

Γ(c′ − a)Γ(b)
(−y)−aF4

(
a, a+ 1 − c′, c, a+ 1 − b;

x

y
,
1

y

)
+

+
Γ(c′)Γ(a− b)

Γ(a)Γ(c′ − b)
(−y)−bF4

(
b+ 1 − c′, b, c, b + 1 − a;

x

y
,
1

y

)
,

(A-14)

and a similar relation with x,y interchanged.
The Appell function F4(a, b, c, c

′;x, y) fulfills the canonical equations (the parameters
and arguments of F4 have been suppressed)

x(1 − x)∂2
xF4 − y2∂2

yF4 − 2xy∂x∂yF4 + [c− (1 + a+ b)x] ∂xF4−
− (1 + a+ b)y∂yF4 − abF4 = 0

y(1 − y)∂2
yF4 − x2∂2

xF4 − 2xy∂s∂yF4 +
[
c′ − (1 + a+ b)y

]
∂yF4−

− (1 + a+ b)x∂xF4 − abF4 = 0. (A-15)
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The fundamental solutions can be chosen e.g.

z1 = F4(a, b, c, c
′, s, t)

z2 = s1−cF4(a+ 1 − c, b+ 1 − c, 2 − c, c′, s, t)

z3 = t1−c′F4(a+ 1 − c′, b+ 1 − c′, c, 2 − c′, s, t)

z4 = s1−ct1−c′F4(a+ 2 − c− c′, b+ 2 − c− c′, 2 − c, 2 − c′, s, t); (A-16)

other forms can be used in order to achieve the desired region of convergence.



Appendix B

Expansions around u = 1

The scalar field φ and its dual φD are written in terms of elliptic integrals. The
arguments of these go to 0, resp. 1, for u = 1. The elliptic integral K(q) diverges for
q → 1, so we must use expansions.

The general formulas for expansions of the elliptic integrals around k = 0 and
k = 1, resp., are [43]

for k → 0

K(k) =
π

2

{
1 +

(
1

2

)2

k2 + . . . +

[
(2n − 1)!!

2nn!

]2

k2n + . . .

}
(B-1)

E(k) =
π

2

{
1 − 1

22
k2 − . . . −

[
(2n− 1)!!

2nn!

]2 k2n

2n− 1
− . . .

}
(B-2)

for k → 1

K(k) = ln
4

k′
+

(
1

2

)2(
ln

4

k′
− 2

1 · 2

)
(k′)2 +

(
1 · 3
2 · 4

)2(
ln

4

k′
− 2

1 · 2−

− 2

3 · 4

)
(k′)4 +

(
1 · 3 · 5
2 · 4 · 6

)2(
ln

4

k′
− 2

1 · 2 − 2

3 · 4 − 2

5 · 6

)
(k′)6 + . . . (B-3)

E(k) = 1 +
1

2

(
ln

4

k′
− 1

1 · 2

)
(k′)2 +

12 · 3
22 · 4

(
ln

4

k′
− 2

1 · 2 − 1

3 · 4

)
(k′)4+

+
12 · 32 · 5
22 · 42 · 6

(
ln

4

k′
− 2

1 · 2 − 2

3 · 4 − 1

5 · 6

)
(k′)6 + . . . . (B-4)

We shall expand u in the form u = 1+ ε eiφ. For the field φ and its dual φD, we find
the following expansions

φ =
4

π

(
1 − 1

8
ε ln εeiφ +

(
5

8
ln 2 +

1

8

)
εeiφ − 1

8
iϕεeiφ +

1

4
εeiφ +O(ε2)

)
(B-5)

φD = i
1

2
εeiφ(1 − 5

32
εeiφ). (B-6)

We can write the expansion of φD in the form φD ≈ i
2εe

iφe−
5

32
ε(cos ϕ+i sinϕ), so its

phase is arg φD = π
2 +ϕ− 5

32ε sinϕ. This phase is constant along the solution of the
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differential equation (5.7) and equal to π
2 −α. Thus we get a relation between ε and

ϕ close to u = 1 for curves of constant Z-phase

α+ ϕ ≈ 5

32
ε sinϕ. (B-7)

From this we see that ϕ goes to −α as we get closer to u = 1.
We can find the differential equation for ε and solve it approximately to lowest

order. Inserting u = 1 + εe−iα in (5.10) we find the differential equation

εt =
π

2

√
2

e−iα

−1
2 ln ε

, (B-8)

where we used K(q) ≈ −1
2 ln ε and iτ̄/Imτ ≈ 1. The solution of this equation is

ε ≈ −π
√

2(t− t0)

ln [−π
√

2(t− t0)]
, (B-9)

the constant t0 is chosen so that ε(t0) = 0, ie. for Z-poles and critical Z-poles
t0 = t(rc), for XZ-poles and bouncing XZ-poles t0 = 0. Thus, close to u = 1 the
solution goes as

u = 1 +
−π

√
2(t− t0)

ln[−π
√

2(t− t0)]
e−iα. (B-10)

In terms of the parameter r this can be written (except for critical Z-poles)

u = 1 − π
√

2tr(ra)
r − ra

ln(r − ra)
e−iα,

where ra is the point at which u = 1. For critical Z-poles tr(ra) = 0, so we have to
take a higher term and get u = 1 − π

√
21

4trr(ra)(r − ra)
2/ ln(r − ra).

For the calculation of the electric fields we need the expansions of τ and φD

φ ;
these are

τ = − iπ

ln ε+O(ε0)

(
1 +

1

8
εeiφ +O(ε2)

)
(B-11)

φD

φ
=
iπ

8
εeiφ +O(ε2), (B-12)

Further, we need the following expansions

Re τ
Imτ

= − −1
8ε sinα+O(ε2)

1 + 1
8ε cosα+O(ε2)

(B-13)

Re φD

φ

Im φD

φ

=
iπ

8
εe−iα (B-14)

φD

φ

Im φD

φ

= −i(1 + i tanα) +O(ε). (B-15)



Appendix C

SU(3) notations

The algebra su(3) is well known, for a detailed treatment, see e.g. [45], [46]. The
su(3) algebra consists of traceless Hermitian 3 × 3 matrices. A convenient basis of
these is constituted by the Gell-Mann matrices λa

λ1 =




0 1 0
1 0 0
0 0 0


 λ2 =




0 −i 0
i 0 0
0 0 0




λ3 =




1 0 0
0 −1 0
0 0 0


 λ4 =




0 0 1
0 0 0
1 0 0




λ5 =




0 0 −i
0 0 0
i 0 0


 λ6 =




0 0 0
0 0 1
0 1 0




λ7 =




0 0 0
0 0 −i
0 i 0


 λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 (C-1)

The generators are usually chosen to be TA = 1
2λA, so that the scalar product in

su(3) is (TA, TB) = tr(TATB) = 1
2δAB . We will refer to this as to the standard basis

of SU(3). The structure constants are then by [TA, TB ] = icABCTC

c345 = c246 = −c156 = c147 = c257 = −c367 =
1

2

c458 = c678 =

√
3

2
c123 = 1 (C-2)

The nonzero components of the totally symmetric SU(3) tensor dABC are in the
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standard basis (up to symmetry) dABC = tr({TA, TB}TC),

d443 = d553 = d641 = d652 =
1

4

d663 = d773 = d742 = −d751 = −1

4

d811 = d822 = d833 =

√
3

6

d844 = d855 = d866 = d877 = −
√

3

12

d888 = −
√

3

6
. (C-3)

.
Following the notation of [21] and [22], we will use a rescaled basis which brings the
restriction of the Killing metric on the Cartan subalgebra to a unit matrix. The
rescaling is 1/

√
3 for the generators of the Cartan subalgebra which is chosen as

usual in the directions T3, T8 and 1/
√

6 for the root generators

H1 =
1√
3
T3 E±α1

=
1√
6
(T1 ± iT2)

H2 =
1√
3
T8 E±α2

=
1√
6
(T4 ± iT5)

E±α3
=

1√
6
(T6 ± iT7).

The roots are then α1, α2 and α3, all with the same norm 1/3

α1 =

(
1√
3
, 0

)
α2 =

(
1

2
√

3
,
1

2

)
α3 =

(
− 1

2
√

3
,
1

2

)
. (C-4)

The simple roots can be chosen to be α1 and α3.
In terms of these rescaled Cartan and root generators, the nonzero components of
the scalar product are

tr(HiHj) =
1

6
δij

tr(Eαj
E−αj

) =
1

6
, j = 1, 2, 3.

Another possible choice of basis for the Cartan subalgebra which treats the diagonal
elements in a more symmetric way is

T1 =




1 0 0
0 −1 0
0 0 0


 (C-5)

T2 =




0 0 0
0 1 0
0 0 −1


 . (C-6)
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In the description of the quantum SU(3) monopole, we use both bases. The basis
derived from the Gell-Man matrices is used for the parts which are closer to the
classical description; the symmetric basis is used for matters related to the Seiberg-
Witten description. The transition matrix from the standard basis to this symmetric
basis is

MiA =

(
2 0

−1
√

3

)
. (C-7)

The components of the field Φ, its dual ΦD and the modulus τ transform in the rika se tomu
tak?usual way

φi = φAM
−1
Ai

φD,i = MiAφD,A (C-8)

τij = MiAFABM
T
Bj . (C-9)



Appendix D

General derivation of Picard Fuchs
equations

Derivation of PF equations

In [37] a general, systematic method is presented, which can be used for all classical
gauge groups with massless matter. The derivation is actually very simple, only
algebraic operations and per-partes integrations are needed. But the cost for this is
the large numbers of objects involved and the tedious calculations needed. We shall
give here a very brief overview, focusing only on the main ideas, important formulas
and (hopefully helpful) intermediate results. The elliptic curve for an SU(n) gauge
group was given in (4.45), for the general case the second term reads as xkΛl, the
integers n, k, l are determined for the individual gauge groups and matter contents.
The highest coefficient un can be normalized to 1 and the next highest coefficient
can be set to zero un−1 = 0. The scale Λ will be set to 1 for simplicity. The periods
Πj given in (4.48), (4.47) can be generalized to

Ω(µ)
m = (−1)µ+1Γ(µ+ 1)

∮

γ

xm

W µ+1
dx, (D-1)

where W = y2. The usual periods ωj are obtained upon setting µ = −1/2 and
m = 0, 1, · · · , g − 1. The general idea of the derivation is as follows: both the
periods Ω

−1/2
m and their derivatives with respect to the moduli ∂Ω

−1/2
m /∂ui can be

expressed as linear combinations of the periods Ω
1/2
m . This can be used to find a set

of coupled first order differential equations for the periods Ω
−1/2
m . This includes also

the Seiberg-Witten potential λSW , since it is also a combination of these periods

λSW =

[
k

2
p(x) − xp′(x)

]
dx

y
. (D-2)

In the following, all total derivatives will be dropped. A period Ωµ
m can be expressed

in terms of the periods Ωµ
m in two ways: either directly from the definition as

−(1 + µ)Ωm
m = (−1)µ+2Γ(µ+ 2)

∮

γ

xmW

W µ+2
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or by expressing x2n−1 from ∂W/∂x, inserting in Ωµ+1
m+2n−1 and using per partes

to change the integral of ∂W/∂x to Ωµ
m. Combining both we can find two crucial

recursion relations for the periods

Ωµ
m =

1

m+ 1 − 2n(1 + µ)

[
(k − 2n)Ωµ+1

m+k+

+

n−1∑

j=0

n−1∑

l=0

(2n − j − l)ujulΩ
µ+1
m+j+l + 2

n−1∑

j=0

(n− j)ujΩ
µ+1
m+n+j


 (D-3)

Ωµ+1
m =

1

m+ 1 − 2n(µ+ 2)

[
(m− 2n+ 1 − k(1 + µ))Ωµ+1

m+k−2n+

+ 2

n−1∑

j=0

((1 + µ)(n+ j) − (m− 2n + 1)ujΩ
µ+1
m−n+j+

+
n−1∑

j=0

n−1∑

l=0

((j + l)(1 + µ) − (m− 2n + 1))ujulΩ
µ+1
m+j+l−2n


 (D-4)

These recursion relations allow us to express the periods Ω
(−1/2)
m with m in the so-

called basic range R = (0, 1, . . . , g − 1, g + 1, . . . , 2g) as linear combinations Ω
(1/2)
m ,

m ∈ R. We will discuss later the special cases m = n− 1 and m = 3n− 1, where the
recursion relations are not valid. Define the matrix of this linear transformation as
M

Ω−1/2
m = Mmm′Ω

1/2
m′ , m,m′ ∈ R. (D-5)

The linear expansion of the derivatives of the periods ∂Ωµ
m/∂ui in terms of the periods

Ωµ+1
m can be found immediately from the definition

∂Ωµ
m

∂ui
= 2

n∑

j=0

ujΩ
µ+1
m+j+i. (D-6)

The matrix of this linear transformation is D(ui) and we find the differential equation
for the periods

∂Ω
−1/2
m

∂ui
= D(ui)mm′Ω

1/2
m′ =

(
D(ui)M

−1
)
mm′

Ω
−1/2
m′ . (D-7)

It can be proven that M is invertible everywhere except for the singular curve. Since
we are interested only in the differential equation for the Seiberg-Witten potential,
we can change our basis so that λSW is one of the basis vectors. This can be always
done, since from (D-2) we see that as long as k < 2n (which is always fulfilled), λSW

always contains a nonzero term proportional to ωn. Denote the new basis formed by
ωm, m ∈ R,m 6= n as π and the transition matrix from the old ωm basis to the π
basis as K. Then the differential equations for the new basis read

∂Π
−1/2
m

∂ui
= Ui,mm′Π

−1/2
m′ , (D-8)

Ui = KD(ui)M
−1K−1 +

∂K

∂ui
K−1. (D-9)
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The extraction of a set of differential equations fulfilled by the SW potential is non-
trivial. However if the SW potential is a potential for some differentials, i.e.

∂λSW

∂ui
= Πi,

the situation can simplify. This is the case for SU(n), and partly for SO(n) and
Sp(n). In the case of the SU(n), groups the SW potential acts as a potential for all
differentials of the first kind, i.e. ωm, m < n− 1. The square 2g × 2g matrix Ui can
be split into four g × g matrices Ai, Bi, Ci, Di

Ui =

(
Ai Bi

Ci Di

)
. (D-10)

Solving for λSW = Πn from the first n equations, we find

∂

∂ui
Πn =

n−1∑

k,l=1

[
B−1

i

]
1,k

(
∂Πk

∂ui
−Ai,k,lΠl

)

where we assumed that Bi is invertible. Using the fact that the periods Πk, k =
1, . . . , n − 1 are derivatives of the SW potential we find the final equations

n−1∑

k,l=1

[
B−1

i

]
1,k

(
∂2λSW

∂ui∂uk
−Ai,k,l

∂λSW

∂ul

)
− λSW = 0. (D-11)

At last, we will return to the problem cases when the recursion formulae (D-4) are
not valid. The case n − 1 does not pose a problem, since the period Ω

(−1/2)
n−1 is not

needed anyway. On the other hand, Ω
1/2
3n−1 is needed to express both Ω

(−1/2)
2n−2 and its

derivatives. In order to find an alternative expression for Ω
(−1/2)
2n−2 , divide x2n−2W by

∂W/∂x, denoting the quotient as q(x) and the remainder as r(x)

x2n−2W = q(x)
∂W

∂x
+ r(x).

Integrating this, we find the relation

−(1 + µ)Ω
(µ)
2n−2 = −

2n−1∑

j=0

jqjΩ
(µ)
j−1 +

2n−2∑

l=0

rlΩ
(1+µ)
l ,

which can be used to find the following expression for Ω
(−1/2)
2n−2

Ω
(−1/2)
2n−2 =

2n

n− 1

2n−2∑

j=0

rlΩ
(1/2)
l − lqlΩ

(−1/2)
l−1 . (D-12)

All occurrences of the period Ω
(−1/2)
n−1 , which is not in the standard range, should be

moved to the left side, and the subspace formed this way should be used everywhere
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instead of Ω
(−1/2)
2n−2 . A similar trick can be done for the derivatives, using x2n−2∂W/∂ui

instead of W. The result is

∂Ω
(−1/2)
2n−2

∂ui
= −

n−1+i∑

j=0

jq
(i)
j Ω

(−1/2)
j−1 +

2n−1∑

j=0

r
(i)
l Ω

(1/2)
l , (D-13)

where q(i)l are the coefficients of the quotient polynomial and r(i) the coefficients of
the remainder. The coefficients of the quotient and remainder are derivatives of the
corresponding coefficients of q(x) and r(x); therefore all relations refer to the same
subspace. Also, Ω

(1/2)
n−1 appeared as a side product in our relations, and thus we need

some other relation to get rid of it. This can be achieved by doing the same trick for
xn−1W

−(1 + µ)Ω
(µ)
n−1 = −

n∑

j=0

jqjΩ
(µ)
j−1 +

2n−2∑

l=0

rlΩ
(1+µ)
l .

Furthermore, the leading coefficient of q(x) must be 1/2n; thus the problematic
Ω

(−1/2)
n−1 drops out and leaves us, after using (D-4), with a relation among the Ω

(1/2)
m .

PF equations for SU(2)

For SU(2), the curve is given by (4.15); thus n = 2, k = 0, there is only one modulus
u0 ≡ u and the standard range is R = 0, 2. The Seiberg-Witten potential is then
λSW = −2Ω

−1/2
2 . The matrices M and D(u) are readily found

M = 4

(
1 − u2 −u

−u(1 − u2) −(1 − u2)

)
D(u) = 2

(
u 1

u2 − 1 u

)
. (D-14)

From this we find
(
∂uΩ

(−1/2)
0

∂uΩ
(−1/2)
2

)
=

1

2

(
0 1

u2−1

−1 0

)(
Ω

(−1/2)
0

Ω
(−1/2)
2

)
, (D-15)

which gives us the Picard-Fuchs equation

d2λSW

du2
=

1

4(1 − u2)
λSW . (D-16)

PF equations for SU(3)

The elliptic curve for SU(3) is given by (4.51), the moduli are u0 = −u, u1 = −v, and
the other parameters are n = 3, k = 0, R = 0, 1, 3, 4 and λSW = uΩ

(−1/2)
1 −3Ω

(−1/2)
3 .

Since the equations (D-4) and (D-6) for Ω
(−1/2)
4 and its u-derivative involve Ω

(1/2)
8 ,

we must use the alternative relations (D-12), (D-13) and (D). The quotients, resp.,
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polynomials are

q =
1

6
x5 − 1

9
ux3 − 1

6
vx2− r = −x4(1 +

2

27
u3) − 1

9
u2vx3 +

2

27
u4x2+

− 1

27
u2x− 1

18
uv − 5

27
u3tx+

1

9
v2u2

q(u) = −1

3
x3 − 1

9
ux r(u) = −2

9
u2x4 +

2

9
u3x2 − 2

9
u2tx

q̃ =
1

6
x3 − 1

9
ux− 1

6
v r̃ = −2

9
u2x4 − 1

3
uvx3 − x2(1 − 2

9
u3)−

+
5

9
u2vx+

1

3
uv2

So the linear combination of Ω(−1/2) which should be used instead of Ω
(1/2)
4 is

Ω
(−1/2)
4 − uΩ

(−1/2)
2 and the auxiliary relation among the Ω(1/2) is

Ω
(1/2)
2 =

u

3
Ω

(1/2)
0 .

The new basis is

(Π1,Π2,Π3,Π4) = (Ω
(−1/2)
0 ,Ω

(−1/2)
1 ,Ω

(−1/2)
3 ,Ω

(−1/2)
4 − uΩ

(−1/2)
2 )

and the matrices M , K, D(v) and D(u) are

M =



−2
3u

3 − 3v2 + 3 5uv 3v 2u
10
3 u

2v −4
3u

3 − 6v2 + 6 −4
3u

2 6v
−4u3v + 3v − 3v3 8u− 11uv2 − 4

3u
4 + 6v 4

3u
3 + 3v2 − 6 8uv

−10
3 u

2v2 + 1
3u

2 −4
3u

3v − 6v3 − 6v 4
3u

2v −3 + 6v2




K =




1 0 0 0
0 1 0 0
0 u −3 0
0 0 0 1




D(t) =




2v 2u −2 0
2
3u

2 2v 0 −2
−v2 + 1 −uv v 0
−8

3u
2v −4

3u
3 + 4 − 4v2 4

3u
2 4v




D(u) =




−2
3u

2 2v 0 2
2
3uv

2
3u

2 −2
3u 0

−2u2v −2
3u

3 + 4 − 4v2 2
3u

2 4v
−1

3uv
2 + 1

3u+ 1 − v2 −1
3u

2v − uv 1
3uv + v 0


 .

The determinant of the matrix M is

4

9
(27(1 − v)2 − 4u3)(27(1 + v)2 − 4u3)



APPENDIX D. PICARD FUCHS EQUATIONS 103

so it can be inverted everywhere except for the singular curve. The SW differential
is a potential for Π1, Π2, which is also reflected in the fact that the third lines
of U(v), resp., U(u) are zeros except for the first, resp., second entries, which are
ones. Performing the decoupling procedure described above, we find two differential
equations LiλSW = 0

L1 = (27 − 4u3 − 27v2)
∂2

∂u2
− 12u2v

∂2

∂u∂v
− 3uv

∂

∂v
− u (D-17)

L2 = (27 − 4u3 + 27t2)
∂2

∂u2
− 36uv

∂2

∂u∂v
− 9v

∂

∂v
− 3. (D-18)



Appendix E

Solution of the Picard-Fuchs
equations for SU(3)

The Picard Fuchs equations for SU(3) can be rewritten so that they form canonical
equations for the Appell function F4 [24]. The solution of the canonical equations
can be found in [40].
Asymptotic behaviour can be found for the period integrals (4.50). We can then
choose a suitable combination of fundamental solutions with the given asymptotics.
The calculations are described in more detail here, the final results can be found
in [24].
The first derivatives of the periods are given for further reference.

Differential equations

The Picard-Fuchs equations for the period integrals (4.54) can be rewritten in the
canonical form (A-15) as follows. It is useful to change coordinates from (u, v) to
coordinates s = v2

Λ6 and t = 4u3

27Λ6 . The operators L1 and L2 transform to

L1 = 36u

[
t(1 − t− s)∂2

t − 2st∂s∂t +
2

3
(1 − s− t)∂t −

1

6
s∂s −

1

36

]

L2 = 108

[
s(1 − s− t)∂2

s − 2st∂s∂t +
1

2
(1 − s− t)∂s −

1

6
s∂s −

1

36

]
. (E-1)

The condition (4.55) can also be transformed and gives

4∂t + 6t∂2 + t = 3∂s + 6s∂2
s . (E-2)

We can use this condition to rewrite the operators L1, resp., L2 and get rid of the
terms st∂2

t , s∂t resp. st∂2
s , t∂s. The resulting form is

L1 = t(1 − t)∂2
t − s2∂2

s − 2st∂s∂t +

(
2

3
− 2

3
t

)
∂t −

2

3
s∂s −

1

36

L2 = s(1 − s)∂2
s − t2∂2

t − 2st∂s∂t +

(
1

2
− 2

3
s

)
∂s −

2

3
t∂t −

1

36
. (E-3)

104
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So the Picard-Fuchs equations are equivalent to the canonical equations for the Ap-
pell function F4(−1

6 ,−1
6 ,

1
2 ,

2
3 , s, t). The fundamental solutions of these equations are

given in (A-16), we can use these to match the asymptotic formulas found in [24].
Unfortunately, we do not get all the asymptotic behavior that we need. If we

look at the v → 0, u → ∞ limit, which corresponds to s → 0, t → 0, we find,
using F4(a, b, c, c

′, 0, t) = F (a, b, c′, t) and the expansion formula for the (ordinary)
Gaussian hypergeometric function, given in (A-5), for the solutions z1 and z3 the
same behaviour, namely

z1 ≈ const
√
u(log u+ const)

but no
√
u behaviour that we need for the a1, a2 integrals, as we will see later. We

can use a different solution, where F4 has a different radius of convergence, namely
t−aF4(a, a + 1 − c′, c, a + 1 − b, s

t ,
1
t ), (compare this with (A-14). Substituting this

instead of z3, z4 we start with the following fundamental solutions of our system of
equations

z1 = F4

(
−1

6
,−1

6
,
1

2
,
2

3
, s, t

)

z2 = s
1

2F4

(
1

3
,
1

3
,
3

2
,
2

3
, s, t

)

z3 = t
1

6F4

(
−1

6
,
1

6
,
1

2
, 1,

s

t
,
1

t

)

z4 = s
1

2 t−
1

3F4

(
1

3
,
2

3
,
3

2
, 1,

s

t
.
1

t

)
(E-4)

The expansions of these for large u (i.e. small t) and small v (and s) can be found
using the expansion of hypergeometric function and the relations given in section 4.3

z1 ≈ Γ(2
3)

Γ(−1
6)Γ(5

6 )
(−t) 1

6

[
ln t+ π(i−

√
3) + 3 ln 3 + 4 ln 2 − 6

]

z2 ≈ (−1)−
1

3

Γ(2
3)

Γ(1
3 )2

s
1

2 t−
1

3

[
ln t+ π(i+

1√
3
) + 3 ln 3

]

z3 ≈ t
1

6

z4 ≈ s
1

2 t−
1

3 . (E-5)

The functions s
1

2 , t−
1

3 , t
1

6 , ln t must be analytically continued appropriately.

Asymptotics of the period integrals

The asymptotic behaviour of the period integrals can be determined from the integral
representation

− i

π

∫ ej

ei

x(3x2 − u)

y
dx, (E-6)
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with y given in (4.51), y2 = (x3 − ux − v)2 − Λ6, and ei being the roots of y. We
shall adopt the convention of [24] and choose φ1 to be the integral around e5,e6, φ2

around e1,e2, φD1 around e4, e5, φD2 around e2, e3. The roots of the elliptic curve
are chosen so that in the limit v → 0, u→ ∞ they give

e1 = −√
u+

1

2

v

u
− 1

2

Λ3

u
e2 = −√

u+
1

2

v

u
+

1

2

Λ3

u

e3 = −v
u
− Λ3

u
e4 =

v

u
− Λ3

u

e5 =
√
u+

1

2

v

u
− 1

2

Λ3

u
e6 =

√
u+

1

2

v

u
+

1

2

Λ3

u
(E-7)

In the following, α = v/u3/2 and β = Λ3/u3/2. The integrals of type αi which give
φi are easier. The integral around e1, e2 (i.e. φ2) is

φ2 = − i

π

∫ e2

e1

x(3x2 − u)

y
dx. (E-8)

This can be written by using the substitution x =
√
uz as

φ2 = − i
√
u

π

∫ −1+α/2+β/2

−1+α/2−β/2

z(3z2 − 1)√
(z3 − z − α)2 − β2

dx. (E-9)

The integral itself is finite in the limit α → 0, β → 0. Another substitution z =
−1 + α/2 + sβ/2 and taking only the lowest order in α, β, gives us the final form

φ2 ≈ √
u(1 − α/2) =

√
u− v

2u
(E-10)

The dual integrals are slightly more complicated. The integral φD2 around e2, e3 is
after extraction of the factor

√
u,

φD2 = − i
√
u

π

∫ α−β

−1+α/2+β/2

z(3z2 − 1)√
(z3 − z − α)2 − β2

dx. (E-11)

This integral diverges logarithmically in the limit α → 0, β → 0 as log(x + 1),
x → −1. In order to also find the coefficients of the linear terms, we can cut the
integral into two parts at a point γ. The integral over the interval [γ, 0] will be finite,
whereas the the integral over the interval [−1+α/2+β/2, γ] diverges logarithmically.
We can simplify the term under the square root by writing as a product Πi(x−Ei),
(Ei are rescaled roots ei =

√
uEi) and keep the α, β terms only in those roots that

are close to our integration interval. The integral over the interval [γ, α−β] is finite,
so we can drop all factors of α, β and find

I1 = [3x+ log(x− 1) − log(x+ 1)]0γ

For the second integral we must keep the α, β terms only in the roots e1, e2

I2 =

∫ γ

−1+α/2+β/2

(3z2 − 1)

(z − 1)
√

(z + 1 − α/2)2 − β2/4
dx.
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This integral can be calculated as

I2 =
[
3
√

(x+ 1 − α/2)2 − β2/4+

+
3

2
α log

(
(2 − α+ 2x) +

√
(x+ 1 − α/2)2 − β2/4

)

− 4√
16 − β2 − α2 − 8α

log
(
8
√

16 − β2 − α2 − 8α

√
(x+ 1 − α/2)2 − β2/4 + 32 − 2β2 + 2α2 − 16α + (16 − 4α)(z − 1)

)
+

+
4√

16 − β2 − α2 − 8α
log(x− 1)

]γ

−1+α/2+β/2

The terms involving γ cancel as expected, and we are left with

φD2 = − i
√
u

π
(3 + log β − 3 log 2 − 3

2
α(log β − log 2)) (E-12)

The behavior of φ1 and φD1 can be calculated in a similar way. The final asymp-
totic expansions of the period integrals are then

φ1 ≈ √
u+

1

2

v

u
φD,1 ≈ − i

π

[√
u

(
3 +

1

2
log

Λ6

64u3

)
+

3

4

v

u
log

Λ6

4u3

]

φ2 ≈ √
u− 1

2

v

u
φD,2 ≈ − i

π

[√
u

(
3 +

1

2
log

Λ6

64u3

)
− 3

4

v

u
log

Λ6

4u3

]
(E-13)

Thus the period integrals can be found as linear combinations of the zi’s with the
appropriate asymptotic behaviour

φ1 =
√

3Λ2−
1

3 z3 +
2−

1

3 Λ

3
z4

φ2 =
√

3Λ2−
1

3 z3 −
2−

1

3 Λ

3
z4

φD,1 =
√

3Λ2−
1

3 (−1)
1

3

[
1

2π

Γ(−1
6)Γ(5

6 )

Γ(2
3)

z1 + z3

]
+

+
Λ2

2

3

3
(−1)−

1

6

[
− 3

4π

Γ(2
3 )

Γ(1
3 )
z2 +

√
3

2
z4

]

φD,2 =
√

3Λ2−
1

3 (−1)
1

3

[
1

2π

Γ(−1
6)Γ(5

6 )

Γ(2
3)

z1 + z3

]
+

− Λ2
2

3

3
(−1)−

1

6

[
− 3

4π

Γ(2
3 )

Γ(1
3 )
z2 +

√
3

2
z4

]
. (E-14)

First order derivatives

For further reference we will give here explicitly the first order derivatives of the
fundamental solutions.
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Just like the ordinary hypergeometric function, the derivative of the Appell function
can be written in terms of an Appell function with different parameters (compare
with (A-7))

d

dx
F4(a, b, c, c

′, x, y) =
ab

c
F (a+ 1, b+ 1, c + 1, c′, x, y) (E-15)

and an analoguous relation for the y-derivative. Using this we can write the s,t
derivatives of the fundamental solutions zi as

∂z1
∂s

=
1

12
F4

(
5

6
,
5

6
,
4

3
,
2

3
, s, t

)

∂z2
∂s

=
2

27
s1/2F4

(
4

3
,
4

3
,
5

2
,
2

3
, s, t

)
+

1

2
s−1/2F4

(
1

3
,
1

3
,
3

2
,
2

3
, s, t

)

∂z3
∂s

= − 1

18
t−5/6F4

(
5

6
,
7

6
,
3

2
.1,

s

t
,
1

t

)

∂z4
∂s

=
1

2
s−1/2t−1/3F4

(
1

3
,
2

3
,
3

2
, 1,

s

t
,
1

t

)
+ s1/2t−4/3 4

27
F4

(
4

3
,
5

3
,
5

2
, 1,

s

t
,
1

t

)

∂z1
∂t

=
1

24
F4

(
5

6
,
5

6
,
1

3
,
5

3
, s, t

)

∂z2
∂t

=
1

6
s1/2F4

(
4

3
,
4

3
,
3

2
,
5

3
, s, t

)

∂z3
∂t

=
1

16
t−5/6F4

(
−1

6
,
1

6
,
1

2
.1,

s

t
,
1

t

)
+

1

18
t−11/6sF4

(
5

6
,
7

6
,
3

2
.1,

s

t
,
1

t

)
+

+
1

36
t−11/6F4

(
5

6
,
7

6
,
1

2
, 2,

s

t
,
1

t

)

∂z4
∂t

= −1

3
s1/2t−4/3F4

(
1

3
,
2

3
,
3

2
, 1,

s

t
,
1

t

)
+ s3/2t−7/3 4

27
F4

(
4

3
,
5

3
,
5

2
, 1,

s

t
,
1

t

)
−

− s1/2t−7/3 2

9
F4

(
4

3
,
5

3
,
3

2
, 2,

s

t
,
1

t

)
. (E-16)

The derivatives of the four periods φ1, φ2, φD1, φD2 with respect to u and v can
be easily, though tediously, found using the chain rule and (E-14). The derivatives
of the period integrals are necessary for moduli space motion (6.15), and the period
matrix τ ((4.49) and below)
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