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Chapter 1

Introduction

1.1 A guide through this work

Although the concept of geometric phase came originally from the quantum
theory, the similar phenomenon can be found also in the classical physics.
In the beginning, I give an example of such the phenomenon, namely the
one, arising from the motion of the globe. It should serve for having later a
better insight into the original problem in quantum physics and, especially,
one should see how it is closely related to the geometry.

Two different approaches to geometric phases are defined in the second
chapter. The original Berry phase for the cyclic adiabatic evolutions and the
Aharonov-Anandan phase for the general cyclic evolutions of the physical
systems. The basic properties and connections between are briefly sketched
and the formalism is illustrated on the well-known example, namely the
occurance of an electron in a rotating magnetic field is discussed.

Some experiments manifesting the presence of a geometric phase factor
(and important to my mind) are listed in the third chapter. Namely, the
case of photons in a helically coiled optical fibre, the geometric phase in
the Aharonov-Bohm effect and the geometric phase of three-level systems in
interferometry is analyzed. To conclude this chapter, the (possible) applica-
tions are briefly discussed.

The rich mathematical tool is applied in the fifth chapter and the geomet-
ric phase is interpreted as arising from the holonomy in some bundle. This
geometrical interpretation brings a new point of view. Especially the meaning
of the adjective ”geometrical” is clear, but moreover, the other properties of
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CHAPTER 1. INTRODUCTION 2

the geometric phase are easy to be shown. The classification theorem is also
briefly discussed. The adiabatic case is discussed in detail to get calculation
useful formulae.

The last chapter is devoted to simple examples of the formalism intro-
duced in the previous chapter.

1.2 Motivational example

Geometrical phases arise due to a phenomenon which can be described
roughly as ”a global change without any local change”. For better under-
standing, the following example of the motion of the globe is especially illus-
trative.

We consider that the globe rotates with a constant angular velocity ω
but that the direction of the vector of angular velocity �ω(t) varies in time.
Moreover we assume that this change of the direction is slow with respect
to ω. To be more precise, assume that the change is such that the vector of
angular velocity rotates slowly with an angular velocity Ω around the z axis
of a coordinate system, which is fixed in the outer space and which has the
origin in the center of the globe. The vector �ω(t) remains in the xy-plane.
Then we can write:

�ω(t) = ω · (cos Ωt, sin Ωt, 0)T .

We now choose a moving coordinate system (x̂, ŷ, ẑ), in which the direction
of ω(t) is fixed in x̂-direction and the axes ŷ and ẑ remain ”in the same
direction”, i.e. parallel, with respect to the globe. Rigorously, they are
parallelly transported with respect to the globe, i.e. the infinitesimal change
of the unit vectors �̂y and �̂z in every point is perpendicular to the globe. Then
the equations of motion d�r

dt
= �ω × �r have a simple form

d

dt


 x̂
ŷ
ẑ


 =


 0 Ω 0

−Ω 0 −ω
0 ω 0




 x̂
ŷ
ẑ


 .

The matrix is obviously singular and has one real eigenvalue 0 with a corre-
sponding eigenvector given by c(t) · (1, 0, Ω

ω
)T . This means nothing else but

that in the so called adiabatic limit,i.e. Ω
ω
→ 0, the point (1, 0, 0)T , i.e. the

north pole, is a stationary point. Thus we have proved that if the variation
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of direction of angular velocity is small enough, the position of the rotation
axis with respect to the body is fixed, which is referred to as an adiabatic
theorem for the rigid body motion.

Let us now assume that the vector of angular velocity is slowly changing,
for example in such a way as it is depicted in the picture 1.1. It means
that in the beginning (t = 0) we have (x, y, z) = (x̂, ŷ, ẑ). Then the vector
�ω(t) moves along a meridian then along the equator and then along another
meridian until it comes back to the starting point (t = T ). According to
the adiabatic theorem, the rotation axis traces the same closed path. It
means that after the circuit, the globe will be in the same state x = x̂ up
to a rotation in the yz-plane. It is now easy to compute the angle of this
rotation.

One could guess that the angle equals
∫ T
0
ω(t)dt at first glance. But a

bit properer treatment shows that it is not the truth. It holds only in the
coordinate system (x̂, ŷ, ẑ). The angle of the rotation with respect to this

system after the time T is really ϕd =
∫ T
0
ω(t)dt = ωT . But the system

(x̂, ŷ, ẑ) in the time t = T does not coincide with the system (x, y, z), which
is fixed in the outer space (in t = 0 they coincide). As the angular velocity is

moving on the sphere, the unit vector �̂x is still normal to the sphere and the
unit vectors �̂y, �̂z are still the tangent vectors and they remain parallel (does
not rotate around the x̂ axis). In the words of differential geometry: they are
parallelly transported along the closed path. Because of the curvature of the
sphere (that represents the globe), there will be a nonzero angle ϕg between
the axis ŷ (or ẑ equivalently) in t = 0 and t = T (or equivalently between

the vectors �̂y(t = 0) and �̂y(t = T )). One can see this in figure 1.1. The result
is: Although the axis of rotation comes back to the starting point after the
time T , the globe is not in the same position. The final position differs from
the original about the angle ϕ in the yz-plane which can be computed as the
sum of two angles ϕ = ϕd + ϕg. I will call these angles phases in analogy
with the quantum case. ”Phase” is used meaning just ”angle” for whatever
possible argument of sin(·) or cos(·) or exp(·). The first angle (phase) ϕd
arise due to the angular velocity ω and the second angle (phase) ϕg arise due
to the parallel transport on the sphere. Therefore the former can be called
”dynamical phase” and the latter ”geometric phase”.

In the following, I will focus on the latter. The adjective ”geometric”
is apposite, because it is the geometry of the space on which the motion
is fixed that determines the factor ϕg. Generally, as in our case of the
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Figure 1.1: Parallel transport of the unit vector �̂y(t) in the direction of ŷ axis

sphere, the curvature plays the crucial role. More precisely, the mapping
�̂y(t = 0) → �̂y(t = T ) can be viewed as an element of the holonomy group
of the Levi-Civita connection on the sphere (considered as the Riemannian
manifold). We can then obtain the geometric phase ϕg as the integral of
this connection along the closed path on the sphere. It can be transformed
according to the Stoke’s theorem to a surface integral of the differential of
the connection, which is just the curvature of this connection in our case.
We get consequently that the geometric phase ϕg in the case of the globe is
proportional to the solid angle which determines the area on the sphere that
is enclosed by the path traced by �ω(t) (point (1, 0, 0)(x̂,ŷ,ẑ)).

Note that if we assumed a translation of the vector �ω(t) instead of the
rotation ω, then such a translation of the globe would not produce any
geometrical phase. The angle of rotation would be given only by ϕd in
that case. This is because the motion of the point (1, 0, 0)(x̂,ŷ,ẑ) would be



CHAPTER 1. INTRODUCTION 5

fixed to the flat subspace. This is really the curvature of the sphere which is
responsible for the geometric phase.

I would like to mention that the rotation of Foucault pendulum can also be
explained by such a holonomy. In this example, the vector which determines
the direction of oscillating and which is tangent to the sphere (Earth) is
parallelly transported.

In these classical examples, ”no local change” means that the tangent
vector remains locally parallel during the whole evolution and ”the global
change” is the angle ϕg between the starting and the final vector. This
can be explained by the holonomy of the natural connection on the tangent
bundle of sphere.

Nearly the same situation occurs in quantum physics. Here a system
picks up a geometric phase after a cyclic evolution. This is again given by
the holonomy of a connection in a certain bundle.



Chapter 2

Geometric phases in physics

In this chapter, I introduce two different approaches to the so called geometric
phase. The first part is dedicated the original derivation of Berry [2], which
points out that a system which evolves cyclically under an adiabatic condition
picks up an additional phase factor which turns out to be geometrical in
nature. The Berry’s concept is then shown on an example. A generalization
to the degenerate case, done by Wilczek and Zee [5], is treated in the second
part. Because of the special adiabatic condition, Aharonov and Anandan [3]
tried to remove this condition and to generalize the occurance of the phase
to evolutions that have to fulfill only the cyclic condition. This is introduced
in the second part. Each part contains a general derivation of the ideas, I do
not specialize in the geometrical meaning.

Before starting with the Berry phase, I should mention that, in fact,
the first geometric phase was introduced by Pancharatnam already in 1956
[1]. In this article about the interference of polarized light, he defines a
phase difference of two nonorthogonal polarization states. According to
[1], two states are said to be ”in phase” if the intensity of the superposed
state is maximal. The phase difference is then the phase shift which has
to be applied to one of the states in order to be in this relation with the
second. Further, Pancharatnam points out that this phase has a geometrical
meaning, which arises from the fact that the relation ”to be in phase” is not
transitive. Namely, let us consider three mutually nonorthogonal states of
polarization, which are represented by three points A,B,C on the Poincaré
sphere (Poincaré sphere is a well-known representation for the manifold of
pure polarization states of a plane electromagnetic wave [1]). If the states
are arranged such that A and B are ”in phase” and B and C are ”in phase”,
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CHAPTER 2. GEOMETRIC PHASES IN PHYSICS 7

then, in general, the states corresponding to the points A and C are not
”‘in phase”. Pancharatnam also calculated the extend to which these last
two states are ”out of phase” and showed that this ”phase difference” equals
one half the solid angle on the Poincaré sphere determined by the spherical
triangle ABC obtained by joining the vertices A,B and C by great circle arcs
(geodesic arcs) on the sphere.

The results of Pancharatnam has been later interpreted in the context
of all two-level quantum systems, for which the space of pure state density
matrices is again the sphere S2. The representation is determined by the
obvious identification SU(2)/U(1) = SO(3)/SO(2) = S2. For the three-level
systems, there exists a generalization of the Poincaré sphere representation
[4]. In that case, the coset space SU(3)/U(2) is represented by a simply
connected region in S7.

2.1 Berry phase

In 1984, Berry published a paper [2] in which he considers cyclic evolutions
of systems under special, so called adiabatic, conditions. He finds that a
cyclic evolution of a wave function yields the original state plus a phase
shift, and this phase shift is a sum of a dynamical phase and a geometric (or
topological, or Berry) phase shift. Berry points out the geometrical character
of this phase is not negligible. The phase is gauge invariant and therefore can
not be gauged out as was earlier supposed. Many articles has been already
written to this subject and, consequently, the so-called Berry phase is now
well established, both theoretically as experimentally.

The original point of view of Berry is ”dynamical”. By this I mean that
he starts with a Hamiltonian H that describes the quantum system in ques-
tion. Further he considers that the Hamiltonian depends on a multidimen-
sional real parameter x which parametrizes the environment of the system.
Then the time evolution of the system is determined by the time dependent
Schrödinger equation

H(x(t))|ψ(t)〉 = i�
∂

∂t
|ψ(t)〉

We can choose a basis of eigenstates |n(x(t))〉 corresponding to the energies
En, i.e. such that

H(x(t))|n(x(t))〉 = En(x(t))|n(x(t))〉
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is fulfilled. In the moment, we assume that the energy spectrum of H is
discrete, that the eigenvalues are not degenerated and that no level crossing
occurs during the evolution. Moreover, suppose that the environment and
therefore x(t) is adiabatically varied. It means that the changes are slow in
time with respect to the characteristic time scale of the system (given by the
Planck’s constant divided by the energy difference of two neighboring energy
levels). Then the adiabatic theorem holds and thus, when the system starts
in the n-th energy eigenstate, i.e. |ψ(0)〉 = |n(x(0))〉, the system will be
over the whole evolution at the n-th energy level. But, in general, the state
vector gains a phase factor, i.e. |ψ(t)〉 = eiφn |n(x(t))〉. At first sight, one
would guess that the phase factor equals θn(t) = −1

�

∫ t
0
En(τ)dτ but the point

is that the Schrödinger equation allows an additional phase factor γn(t), i.e.
φn = θn+γn. The former is now called the dynamical phase and the latter the
geometric phase (notice the similarity to the motivational example). Putting
this to the Schrödinger equation we get the following condition for γn:

∂

∂t
|n(x)〉 + i

d

dt
γn(t)|n(x)〉 = 0

or equivalently in a nice form

d

dt
γn(t) = i〈n(x)| ∂

∂t
|n(x)〉 = i〈n|∇|n〉dx

dt
.

Now, when we are given a cyclic evolution, described by a closed curve
C : t �→ x(t) with x(T ) = x(0), then the Berry phase for such an evolution
is given by the following simple expression

γn(C) = i

∮
C

〈n(x)|∇|n(x)〉dx.

From this, one can easily see that the Berry phase depends on the geometry
of the parameter space (and on the loop C therein). That is why Berry
called this phase factor ”geometric phase”. Now, geometric phase is used as
a universal notion for various generalizations of the original Berry’s phase.

Let me briefly show how the Berry phase emerges in the concrete example.
Namely, in the famous and important example when a spin- 1

2
particle occurs

in a magnetic field. I will proceed along the lines of [18]. Consider that

the spin- 1
2

particle is moving in an external magnetic field �B which rotates
adiabatically (slowly) under an angle θ around z-axis as it is depicted in 2.1.
Then the magnetic field is given by



CHAPTER 2. GEOMETRIC PHASES IN PHYSICS 9

Figure 2.1:

�B(t) = B0


 sin θ cos(ωt)

sin θ sin(ωt)
cos θ




where ω is the angular frequency of the rotation and B0 = | �B(t)|. When
the field rotates slowly enough and the expected value of the spin was in the
direction of field, then the spin of the particle will follow the direction of
the field and an eigenstate of the Hamiltonian H(0) stays for all times t an
eigenstate of H(t). The interaction Hamiltonian for this system in the rest

frame is given by H(t) = µ �B · �σ, where �σ are Pauli matrices and µ = 1
2
e
m

�

is the magnetic dipole moment connected with the spin. When we now use
the explicit form of �B we get two normalized eigenstates of H(t)

|n+(t)〉 =

(
cos θ

2

eiωt sin θ
2

)
, |n−(t)〉 =

( − sin θ
2

eiωt cos θ
2

)

with the corresponding energy eigenvalues E± = ±µB0. A calculation of
∇|n±(t)〉 in the spherical coordinates B0, θ, φ(t) = ωt leads to rather simple
expressions

〈n+|∇|n+〉 = i
sin2( θ

2
)

B0 sin θ
, 〈n−|∇|n−〉 = i

cos2( θ
2
)

B0 sin θ
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The curve C in parameter space (which is now sphere) is given by C : B0 =
const., θ = const., φ ∈ [0, 2π]. Thus the Berry phase in this example equals

γ±(C) = i

∮
C

〈n±|∇|n±〉B0 sin θdφ = −π(1 ∓ cos θ).

This is nothing else but the half of the solid angle enclosed by the path C
and so we get the final expression

γ±(C) = ∓1

2
Ω(C).

We see that whereas the dynamical phase (which is now given by ±µ
�
B0T )

depends on the period T of the rotation, the geometrical phase depends only
on the special geometry of the problem.

2.2 Berry phase in the degenerate case

A generalization for the degenerate Hamiltonians was done by Wilczek
and Zee [5]. From the comments above, one can deduce that the term
i〈n(x)|∇|n(x)〉 plays a role of a gauge potential in a U(1) gauge field. This
also shows that the Berry phase is a gauge invariant object and it is not pos-
sible to remove it by a certain choice of the basis states of the Hamiltonian.
The direct generalization leads to non-abelian gauge field U(n). Suppose
that we are given a family of Hamiltonians H(x) depending continuously on
parameters x that has a n-times degenerate level for each value of x. By
a simple renormalization of the energies, we can suppose that these levels
are at E = 0. The degenerate levels are mapped back onto themselves by
adiabatic development and this mapping is nontrivial in general. To show
this, choose an arbitrary smooth set of bases |na(t)〉 for the various spaces of
degenerate levels, so that

H(x(t))|na(t)〉 = 0

Let the solutions |ma(t)〉 of the Schrödinger equation with the initial condi-
tion |ma(0)〉 = |na(0)〉 are given by

|ma(t)〉 = Uab(t)|nb(t)〉.
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Writing this equation, we have assumed the adiabatic evolution and our task
is to determine U(t). We demand that the |ma(t)〉 remains normalized and
this leads to the equation

(U−1U̇)ab = −〈na|nb〉 ≡ Aab

and this anti-Hermitian matrix Aab plays the role of a gauge potential. Then
the desired mapping given by a closed path in the parameter space has the
form

U = Pe
∮
Aµdxµ

where P is the path ordering operator and xµ are coordinates in the param-
eter space. This is known as the Wilson loop.

2.3 Aharonov-Anandan phase

In 1987, Aharonov and Anandan [3] considered cyclic evolutions that are
not restricted by an adiabatic condition and purposed an generalization of
Berry’s phase. This generalization is very important, because the adiabatic
condition is never exactly fulfilled for real evolutions. In the adiabatic ap-
proximation, Aharonov and Anandan phase then tends to the Berry phase if
the parameters are chosen accordingly.

The appearance of Aharonov and Anandan phase (and other phases and
related phenomena) can be explained in terms of quantum mechanics. The
crucial role plays the fact that in quantum physics the physical state of a
system is only determined up to a phase. The physical states are therefore
in a bijective correspondence with points in the projective Hilbert space, i.e.
with the pure-state density matrices. But usually, it is better to compute
in Hilbert space and then pass to the projective space. This is due to the
fact that the geometry of Hilbert space (and the computation therein) is
simpler. The interplay between the Hilbert space and its projective space is
responsible for the phenomena that I discuss here.

According to Aharonov and Anandan, I show the existence of a phase
associated with cyclic evolution, which is universal in the sense that it is
the same for the infinite number of possible motions along the curves in
the Hilbert space H which project to a given closed curve in the projective
Hilbert space P of rays of H. Moreover, it is the same for all the possible
Hamiltonians H(t) which propagate the state along these curves.



CHAPTER 2. GEOMETRIC PHASES IN PHYSICS 12

The question is, what phase factor eiΦ (which can have observable con-
sequences) that the initial and the final state vector of a cyclic evolution
may be related by. Suppose that the normalized state |ψ(t)〉 ∈ H evolves
according to the Schrödinger equation

H(t)|ψ(t)〉 = i�
∂

∂t
|ψ(t)〉,

such that the evolution is cyclic, i.e. |ψ(T )〉 = eiΦ|ψ(0)〉. Let Π : H → P be
the projection map defined by

Π(|ψ〉) = {|ψ′〉 : |ψ′〉 = c|ψ〉, c is a complex number}.

Then |ψ(t)〉 defines a curve C̃ : [0, T ] → H with C ≡ Π(C̃) being a closed
curve in P. Conversely given any such curve C̃, we can define a Hamil-
tonian function H(t) so that the Schrödinger equation is satisfied for the
corresponding normalized |ψ(t)〉. Now define

|ψ̃(t)〉 = e−if(t)|ψ(t)〉

such that f(T )−f(0) = Φ. Then |ψ̃(t)〉 is exactly cyclic, i.e. |ψ̃(T )〉 = |ψ̃(0)〉,
and from Schrödinger equation,

−df
dt

=
1

�
〈ψ(t)|H|ψ(t)〉 − 〈ψ̃(t)|i d

dt
|ψ̃(t)〉.

Hence, if we remove the dynamical part from the phase Φ by defining

β ≡ Φ +
1

�

∫ T

0

〈ψ(t)|H|ψ(t)〉dt,

it follows from the above equation that

β =

∫ T

0

〈ψ̃|i d
dt
|ψ̃〉dt.

This is the final expression for the Aharonov-Anandan phase. Clearly, the
same |ψ̃(t)〉 can be chosen for every curve C̃ for which Π(C̃) = C, by
appropriate choice of f(t). Hence such β, as defined above, is independent
of the total phase Φ and Hamiltonian H for a given closed curve C. Indeed,
from the last expression, β is independent of the parameter t of C, and is



CHAPTER 2. GEOMETRIC PHASES IN PHYSICS 13

uniquely defined up to 2πn (n = integer). Hence eiβ is a geometric property
of the unparameterized image of C in P only and therefore can be viewed
as the second (or third) example of a geometric phase. Moreover, it is a
universal phase in a certain sense (as we will see later).

Now, I will prove along the lines in [3] that in the adiabatic approx-
imation, the phase found by Aharonov and Anandan tends to the phase
found by Berry. Consider therefore a slowly varying Hamiltonian H(t), with
H(t)|n(t)〉 = En(t)|n(t)〉, for a complete set {|n(t)〉}. If we set

|ψ(t)〉 =
∑
n

an(t)e
− i

�

∫
Endt|n(t)〉,

then by using the Schrödinger equation and by differentiating the eigenvector
equation, we obtain

ȧm = −am〈m|ṁ〉 −
∑
n �=m

an
〈m|Ḣ|n〉
En −Em

e
i
�

∫
(Em−En)dt,

where the dot denotes time derivative. In the adiabatic limit, we can further
suppose that ∑

m�=n

∣∣∣∣∣ �〈m|Ḣ|n〉
(En − Em)2

∣∣∣∣∣	 1

holds and that the system starts in an eigenstate, i.e. an(0) = δmn. Then the
last term in the above expression of ȧm is negligible and the system would
therefore continue as an eigenstate of H(t). In this approximation, we get

am(t) = e−
∫ 〈m|ṁ〉dtam(0).

Thus for a cyclic adiabatic evolution, this yields the phase i
∫ T
0
〈m|ṁ〉dt,

which is independent of the chosen |m(t)〉 and which is the phase found by
Berry.

Berry regarded this phase as a consequence of geometrical properties of
the parameter space of which H is a function. But this phase is the same as
Aharonov-Anandan phase β, when we approximate |ψ̃(t)〉 by |m(t)〉 and β,
as defined, does not depend on any approximation and the expression β =∫ T
0
〈ψ̃|i d

dt
|ψ̃〉dt is exactly valid. Moreover, |ψ(t)〉 need not be an eigenstate

of H(t), unlike in the adiabatic case of Berry. It is neither necessary nor
sufficient to go around a closed curve in parameter space in order to have a
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cyclic evolution, with the associated geometric phase β. For these reasons,
β is regarded as a geometric phase associated with a closed curve in the
projective Hilbert space and not the parameter space, even in the special case
considered by Berry. But given a cyclic evolution, a Hamiltonian H(t) which
generates this evolution can be found so that the adiabatic approximation
is valid. Then β can be computed with the use of the expression given by
Berry in terms of the eigenstates of this Hamiltonian.



Chapter 3

Experiments and applications

It seems to be impossible to measure the phase change |ψ〉 → eiϕ|ψ〉 at first
sight, because the normalized vectors |ψ〉 and eiϕ|ψ〉 represent the same state
of a physical system and hence the results of any measurement performed
on them are the same. But, similarly to the wave optics, we can make some
kind of an interference measurement. It means that some part of the physical
system in question can serve as a reference phase. The other part on which
the phase shift is performed is then recombined with the first one to form an
interference pattern. This pattern is obviously different for different values
of the phase shift ϕ.

The second task is to separate somehow the geometric phase from this
total phase ϕ. Many of such experiments which measure the geometric
phase shift have been already proposed and done. The Berry’s phase can be
demonstrated in experiments with photons by variation of the propagation
direction. It is the case of the coiled optical fibre [6] or the Mach-Zehnder
interferometer [7] for example. Other experiments with photons use variation
of polarization to show up the Pancharatnam phase.

Another class of experiments are the experiments with neutrons. Neu-
trons are fermions which are not sensitive to any electric field and hence
they are easy to handle. There are two groups of experiments with neutrons
acquiring a geometric phase: neutron polarimeters and neutron interferome-
ters. To the former, the experiment of Bitter and Dubbers belongs [8], where
the effect of the Berry phase was first shown for fermions. To the latter, the
experiment of Hasegawa, Zawisky, Rauch and Ioffe [9] belongs for example.
Other relevant experiments are these of nuclear magnetic resonance, nuclear
quadrupole resonance or atom interferometer.

15
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3.1 Photons in an optical fibre

This was the first experiment to confirm the prediction of Berry. It was
purposed by R.Y. Chiao and Y.S. Wu [10] in 1986 and this year yet realized
by A. Tomita and R.Y. Chiao [6]. The photon’s spin vector, which points
either along the direction in which it is travelling or in the opposite direction,
can be easily turned by changing the direction of travel. In [10] and [6], it is
done with a coiled optical fibre. Let me introduce this experiment.

We assume that the light propagates inside the fibre in a single mode and
its path is parametrized by the optical path length τ . Adiabatic condition
is the conservation of the helicity which says, in other words, that at each
point τ , the photon’s spin state |�k(τ), σ〉 satisfies

�s · �k(τ)|�k(τ), σ〉 = σ|�k(τ), σ〉,

where �k(τ) is the direction of propagation of the photon at τ and σ = ±1
is its helicity quantum number. Formally, it is identical to the problem
considered in the previous chapter for a spin �s in an adiabatically changing
magnetic field �B(t), g�s · �B(t)| �B(t), ms〉 = E| �B(t), ms〉, where g is related
to the gyromagnetic ratio and ms is the component of the spin along the
direction of �B(t). Now we extend the results from this case to the case of
photon.

Suppose that the fibre is wounded in such a way that the vector �k traces
out a closed curve, e.g. it is hellicaly shaped. In this case, we can use the
derivation of Berry to determine the geometrical phase gained during the
path through the fibre. Now, the parameter space is the momentum space
{�k} and the adiabatic invariant property is the helicity. Berry’s formula for
the photon is very similar to that for electrons. It only differs in a factor 1

2

which is a consequence of the difference of spins of photons and electrons.

γσ = −σΩ(C).

The solid angle Ω(C) is determined by the curve C that the �k-vector traces
out in momentum space (figure 3.1). Now, let us consider a linearly polarized
light which is a superposition of the helicity eigenstates

|ψi〉 =
1√
2
(|k,+〉 + |k,−〉).
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Figure 3.1: The solid angle Ω in momentum space.

One easily shows that the final state, after the propagation through the helix,
is then given by (if we ignore for the moment the dynamical phase factor)

|ψf〉 =
1√
2

(
eiγ+ |k,+〉 + e−iγ+ |k,−〉) .

With this equation we can compute the following squared transition ampli-
tude

|〈ψi|ψf〉|2 = cos2 (γ+) .

This can be interpreted after Malus law as a rotation of the plane of polar-
ization about an angle of γ+. That means the optical fibre, wound into a
helix shaped form, leads to an effective optical activity although the material
of the fibre has no optical active characteristics. The amount of the rotation
indeed does not depend on the wavelength of the light but on the solid angle
and therefore it is a pure geometrical effect.

In the particular experiment of Tomita and Chiao [6], they use approx-
imately 2 meters long single-mode fibre. The fibre is helically wound onto
a cylinder, which can be seen in figure 3.2. The ends of the fibre point into
the same direction to ensure the closed path in �k-space. The polarization of
the light coming from a He-Ne laser is controlled by polarizers as well as the
polarization of the light leaving the fibre.
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Figure 3.2: Experimental setup for measuring of the Berry’s phase in a helical
optical fibre [6]

The experiment consists of two major parts. The first one is to use a fibre
witch is wound with a constant pitch angle θ. The Berry formula reads as

γσ(C) = −2πσ(1 − cos θ) = −2πσ(1 − p

s
),

where s is the length of the fibre and p is the length of the cylinder. This
equation was experimentally verified.

For the second part of the experiment, they used nonuniform wound
helical fibres, i.e. with the pitch angle θ dependent on a parameter τ . Then
the solid angle of the closed curve C, traced out in momentum space, is given
by

Ω(C) =

∫ 2π

0

(1 − cos θ(τ)) dτ

and the Berry phase is γσ = −σΩ(C), which is again related to an optical
rotation which is measured. The measurements then verify these theoretical
predictions.

Note that these optical effects could be explained in principle entirely
classically in terms of Maxwell equations with the appropriate boundary
conditions. When the mutually orthogonal triad of vectors �k, �E and �B will
adiabatically propagate by parallel transport inside a wound fibre, it would
lead to the above results. The problem is in that the classical theory fails for
low photon number, whereas the quantum theory still holds. Fundamentally,
it is the the Bose nature of the photon which allows the appearance of these
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optical manifestations of Berry phase on a classical level. These effects can
be therefore considered as topological features of classical Maxwell theory
which arise in quantum mechanics, but survive the correspondence-principle
limit (� → 0) into the classical level.

3.2 Geometric phase and Aharonov-Bohm ef-

fect

In 1959, Y. Aharonov and D. Bohm demonstrated that the vector potential
has more physical significance that had been previously thought [11]. They
send two beams of electrons past a long tightly wound solenoid along both
sides (as in 3.3 depicted). It is well-known that the magnetic field of the

Figure 3.3: Measurement of the Aharonov-Bohm effect.

solenoid is very simple: it is uniform inside (and parallel to) the solenoid,
and zero outside. Although the electrons occur only in the region where
B = 0, the change of interference pattern, observed when the beams are
recombined, manifests a phase difference of electrons. This phase difference
arise due to the key fact that the vector potential A is nonzero outside the
solenoid.

When we choose a Coulomb gauge (i.e. ∇ · A = 0), the vector poten-
tial outside the solenoid equals A = Φ

2πr
φ̂, where Φ is the magnetic flux,

and r and φ̂ (the azimuthal unit vector) are defined by setting the axis of
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the solenoid as the axis of a cylindrical coordinate system (see figure 3.3).
Aharonov and Bohm realized that the presence of the nonzero vector poten-
tial fundamentally changed the behavior of the wave function. Space, for the
wave function, is no longer simply connected and the integrals

∮
A · dr are

path dependent. It is precisely the difference of such integrals between the
two different paths around the solenoid that give rise to the Aharonov-Bohm
effect observed as a shift of the interference fringes.

Now, following [2], I show how this effect may be seen in terms of a
geometric phase. The splitting and recombination of the beam of electrons
can be viewed in such a way that the electrons goes backwards in time along
one path and returns along the other path to its original state at the same
time. It defines a circuit C around the solenoid. Let the physical (quantal)
system, described by |n(R)〉, consist of an electron (or electrons), with a
charge e, which is in a box that is centered in R and lies outside the solenoid.
In the case of A = 0, the Hamiltonian for an electron depends on the position
of electron r̂ and has a form of H(p̂, r̂−R). The corresponding wavefunctions
are ψn(r − R) with energies En independent of R. Now, when A �= 0, the
states |n(R)〉 satisfy the eigenequation

H (p̂− eA(r̂), r̂ − R) |n(R)〉 = En|n(R)〉.

One can verify that the exact solutions (in the coordinate representation) of
this equation are obtained by multiplying ψn by an appropriate phase factor
as follows:

〈r|n(R)〉 = e
ie
�

∫ r
R A(r′)·dr′ψn(r −R).

Since the solenoid is not inside the box, the integral in this equation is
independent of the path from R to r. When we transport the system (box)
round the circuit C, the system |n(R)〉 acquires a geometric phase factor.
This factor can be calculated using the Berry’s formula from previous chapter
and using

〈n(R)|∇Rn(R)〉 =
∫ ∫ ∫

d3rψ̄n(r − R)
(− ie

�
A(R)ψn(r − R) + ∇Rψn(r − R)

)
= − ie

�
A(R),

where the simplification is a consequence of the normalization of the wave-
functions ψn. And finally, the Berry phase is given by

γn(C) =
e

�

∮
C

A(R) · dR =
eΦ

�
.
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The final line follows from the Stokes theorem. This result agrees with that
obtained in [11]. It is independent of n and also of C if this winds once and
only once round the solenoid. It is also obvious that C can be taken such
that R is two-dimensional.

It means that the parameter space of the HamiltonianH is in fact R2. But
this space is locally flat against the previous example, where the parameter
space was a sphere S2, which is obviously curved. One can not in any case
use the Berry’s solid angle formula and it seems so that the geometric phase
should be zero, although it is not the truth as we have computed. This
”mystery” is the same as the ”mystery” of the Aharonov-Bohm effect-the
electron occurs in a field with B = 0 but nevertheless, it gains a phase factor.
The core of this ”mystery” is in that the Hamiltonian has a singular point in
r = 0. Thus the parameter space is R

2 \ {0} which is not simply connected
and the path integrals

∮
A(R)·dR occuring in the expression of the geometric

phase are nonzero for the paths which enclose the singularity and hence the
geometric phase is nonzero. There is no problem to consider R ∈ R3. In this
case, the singularity becomes a singular line l (representing the solenoid) and
thus the parameter space is R3 \ {l}. The solenoid even need not to be long
tight but can have the shape of a torus T . In this case, the parameter space
would be R3 \ {T} and the geometric phase would be the same of course.
This is due to the fact that the geometric phase depends on the fundamental
group of parameter space only and π1(R

2\{0}) = π1(R
3\{l}) = π1(R

3\{T}).
In this example, the topology (rather than geometry) of the parameter space
plays the crucial role.

3.3 Three-level systems in interferometery

The two preceding examples give a possibility of measurement of the geo-
metric phase for a photon and for an electron respectively. These examples
are rather different in that the geometric phase arises in a different way, as I
noted. But in both cases, it is the (abelian) Berry phase. We can view this
obviously as the (universal) Aharonov-Anandan phase. It means to consider
this geometric phase only as a functional of the closed curve in appropriate
(projective) Hilbert space and do not matter what Hamiltonian produced the
curve. Such a purely kinematic derivation is done in [25]. In that point of
view, both of the foregoing geometric phases arise in the evolution of U(1)-
invariant states - the states of the Poincaré sphere (S2 ∼= SU(2)/U(1)) and
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states of R2 respectively.
Now, I will briefly discuss the example of a three-level system, where

the states are U(2)-invariant. An example of such a system can be the
system of three photons |ψ〉. A general SU(3) transformation is then realized
by a three-level interferometer. It is a sequence of several beam splitters.
Since every beam splitter corresponds to a SU(2) transformation, such a
construction is possible (every element of SU(3) can be obviously decomposed
as a product of several elements of SUij(2), i, j ∈ {1, 2, 3}). The SU(3)
transformations that produce the same physical state form a group that is
isomorphic to U(2). This group can be obtained as the stability group of
|ψ〉 up to a phase [21]. Therefore, the space of states can be identified with
SU(3)/U(2) and the states are obviously U(2)-invariant.

When we use the purely kinematical approach of [25], the geometric phase
associated with a, generally open, curve C in SU(3)/U(2) is given as follows

ϕg[C](= β) = ϕtot[C̃] − ϕdyn[C̃],

where, of course, the total phase and the dynamical phase are defined to
be ϕtot[C̃] := arg〈ψ(s1)|ψ(s2)〉 and ϕdyn[C̃] := Im

∫ s2
s1
ds〈ψ(s), ψ̇(s)〉 respec-

tively. The C̃ ∈ SU(3) is an arbitrary lift of the curve C and s1 ≤ s ≤ s2

is its parametrization. It can be shown that two points in the state space
SU(3)/U(2) can be connected by a unique arc for which the geometric phase
is zero. Such a curve is called a geodetic arc [25]. Now, consider (for exam-
ple) three arbitrary state vectors |ψ1〉, |ψ2〉, |ψ3〉 which we connect by geodetic
arcs. It turns out that the geometric phase associated with such geodetic tri-
angle is given simply by ϕg = 〈ψ1|ψ2〉〈ψ2|ψ3〉〈ψ3|ψ1〉, which is known as the
Bargmann invariant.

A nice experiment, manifesting a geometric phase of a system of three
photons, was proposed in [12]. Therein, an optical scheme is introduced
to produce and detect an abelian geometric phase shift which arises from
such transformation along a geodesic triangle. The scheme employs a three-
channel optical interferometer and four experimentally adjustable parame-
ters. The SU(3) transformation is realized by a sequence of unitary trans-
formations given by optical elements inside the three-channel interferome-
ter. The space of output states of the interferometer can be identified with
SU(3)/U(2). This space is a generalization of the Poincaré sphere [4].

Such experiment is particularly interesting, because there is a big dif-
ference against the two previous experiments, where the curves were gen-
erated by a Hamiltonian and the parameter was time t. In this case, the
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curve is parametrized by an evolution parameter s, which is a function of
the adjustable parameters of the interferometer. We can adjust these pa-
rameters such that the output state evolves cyclically along the geodesic
triangle ψ(1) → ψ(2) → ψ(3) → eiϕgψ(1) in the (four-dimensional) state space
SU(3)/U(2) (figure 3.4). The geometric phase ϕg associated to this trian-

Figure 3.4: By adjusting the parameters of the interferometer, the output state in
the geometric space can be made to evolve along geodesic paths, from one vertex
to the next, until the triangle is closed.

gle is given by the appropriate Bargmann invariant. Thus, it can be easily
computed as a function of adjustable parameters of interferometer ([12]).

A key technical challenge is measuring of the geometric phase ϕg, because
one must have a reference state with which to interfere the output state.
The input state is bad choice because it contains a dynamical phase due
to evolution through the interferometer. However, this optical phase can
be eliminated through the use of a counterpropagating beam. The concrete
experimental setup is described in [12]. Two beams, orthogonally polarized,
are propagating through the interferometer at the same time in the opposite
directions and in the output they interfere. The interference pattern then
gives the relative phase difference 2ϕg, which should confirm the theoretical
prediction.
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3.4 Applications

As I have already mentioned, the experiment with a coiled optical fibre can
be understood with classical Maxwell equations. The other two experiments
can be also, in fact, explained by a classical physics. Nevertheless, in 1991
Kwiat and Chiao [13] did an experiment with entangled photons, where the
quantal character of the phase was confirmed.

By Schrödinger, entanglement was denoted as a fundamental concept of
quantum mechanics. The approach of Berry phase can by applied to the
entanglement and then various Bell inequalities are established. These are
inequalities with various expectation values, which have to be satisfied by
every local realistic theory. But the Bell inequalities can be violated by
quantum mechanics. Also, Bell inequalities that involve Berry phases exist
and they are also violated by quantum mechanics, which again demonstrates
quantum nature of the geometric phase.

It is useful to note that the geometric phase, e.g. in the Aharon-Bohm
effect, can be an exploited for extremely precise measurements of field char-
acteristics, e.g. magnetic flux, via detecting interference fringes shifts.

The most important (to my mind) application of the geometric phase
is in quantum computation. The unit of quantum information is called
qubit (quantum bit) and is realized by a quantum system with two accessible
orthogonal eigenstates represented by the two boolean values |0〉 and |1〉. But
in contrast to a classical bit, this system can also exist in any superposition
α|0〉 + β|1〉, where |α|2 + |β|2 = 1. This is one of the reasons why quantum
computers are more powerful than classical computers. A quantum logic
gate is then a device that performs a unitary operation on a qubit. A general
operation is possible to realize by using one and two-qubit operations, e.g.
by Hadamard gate, phase gate, C-NOT gate and controlled phase shift gate
[18].

Geometric phases seem to be good candidates for realizing low noise quan-
tum computing devices. Because of the dependence only on the geometry of
the appropriate space the geometric phase is an ideal construction for fault-
tolerant quantum computation. Nevertheless, it has also several drawbacks,
e.g. one has to get rid of the dynamical phase. There are many physical
realizations of quantum computers and quantum gates. For example, the op-
tical photon quantum computer, where the polarization states of the photon
represents the two base states. Other example of a suitable physical systems
is nuclear magnetic resonance (see for instance [26]).



Chapter 4

Geometrical interpretation

In the case of the geometric phase in quantum mechanics, the situation is
similar to that in the case of the motivational example in the beginning of
this work. It turns out that the geometric phase is given by a holonomy in a
certain principal fibre bundle. Then its geometric nature and many properties
become obvious. It brings a new point of view in which the problem can be
well understand without much computation. Last but not least, it gives a
nice application of a rich mathematical theory.

4.1 Holonomy interpretations of the geomet-

ric phase

A short time after Berry had found the geometrical phase factor ([2]), Barry
Simon in [20] argued that it is precisely the holonomy in a Hermitian line
bundle since the adiabatic theorem naturally defines a connection in such
a bundle. This not only took the mystery out of Berry’s phase factor, but
provided calculational simple formulas. Let us now discuss this Simon’s
nondegenerate case in more detail.

In the definition of the Berry phase in chapter 2, we considered a Her-
mitian operator (Hamiltonian of the system) H(x) depending smoothly on
a parameter x ∈ M , with an isolated nondegenerate eigenvalue En(x) de-
pending continuously on x. Let me restrict to the unitary evolution for the
moment. Then the eigenstates |n(x)〉 of H(x) are assumed to be normalized
and it is straightforward that the association x �→ |n(x)〉 defines a principal

25
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fibre bundle λ over the parameter space M with fibres

Lx = {|ψx〉 : |ψx〉 = eiϕ|n(x)〉, ϕ ∈ R} ∼= U(1).

The point is that twisting of this U(1)-principal bundle U(1) → λ → M
affects the phase of quantum mechanical wave functions.

Consider a closed curve C : [0, T ] � t → x(t) ∈ M in the parameter
space (x(0) = x(T )) and set H(t) := H(x(t)). When the system evolves
adiabatically along this loop, the state vector |ψ(t)〉 of the system which
is initially an eigenstate |ψ(0)〉 := |n(0)〉 of the Hamiltonian H(0) evolves
according to the Schrödinger equation and remains always an eigenstate of
H(t) and therefore, after time T , gains a phase factor

|ψ(T )〉 = e−
i
�

∫ T
0 En(t)dt|n(T )〉 = e−

i
�

∫ T
0 En(t)dteiγ(T )|ψ(0)〉

as explained in the chapter 2. The Berry’s additional phase factor γ(t)
obviously defines a way of transporting of the basis |n(t)〉 along C, i.e. a
lift C̃ ∈ λ of the loop C ∈ M , by associating t �→ |n(t)〉 = γ(t)|n(0)〉, i.e. a
connection ω in the principal fibre bundle. According to the chapter 2, we
know that the local expression of the connection (i.e. the gauge potential) is
given simply by the U(1)-valued one-form

A := −〈n(x)|d|n(x)〉 = −〈n(x)| ∂
∂xµ

|n(x)〉dxµ.

In this Berry-Simon (adiabatic) approach (further BS approach), the term
eiγ(C) = e

∮
C A is thus nothing else but the element of the local holonomy group

Hol|n(0)〉(ω) based at the point |n(0)〉 ∈ λ coming from the loop C. Of course,
such a holonomy group is (in general) a subgroup of the structure group U(1)
of λ. Note that in this nondegenerate case the Lie algebra of the structure
group is one-dimensional and therefore A∧A = 0 and we can use the Stoke’s
theorem to compute the Berry’s phase directly, as an integral of the curvature
ρ of the connection ω: iγ(C) =

∮
C
A =

∫ ∫
S
dA =

∫ ∫
S
(ρ− A ∧ A) =

∫ ∫
S
ρ,

where S = ∂C.
Note also that if we consider a general, nonunitary, evolution we get

an equivalent description. Instead of λ we have an associated complex line
bundle L = λ ×U(1) C with fibres isomorphic to C. The expression of the
gauge potential is the same (but the form is C-valued now) and eiγn(C) is again
an element of the holonomy group of this bundle, which is a (sub)group of
GL(Lx) ∼= U(1).
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Figure 4.1: The fibre bundle for the Berry phase

As I described in the chapter 2, Aharonov and Anandan [3] (and Anan-
dan and Stodolsky [14]), realized that instead of considering a closed loop
in parameter space, one could consider the closed loop in state space (or
equivalently projective Hilbert space) and drop the adiabaticity condition.
In the Aharonov-Anandan (further AA) approach, one can again restrict to
the unitary case and consider a U(1)-principal bundle η, over the state space
(projective Hilbert space) P = CPN (N = dim(H) − 1) with fibres

η|ψ〉〈ψ| =
{
eiδ|ψ〉, eiδ ∈ U(1)

} ∼= U(1)

over a point |ψ〉〈ψ| in P. The connection in this AA bundle η : U(1) → H∗ →
P is given in a quite natural way - the horizontal subspaces are perpendicular
to the fibres with respect to the Hilbert space inner product. In the local
form this reads as

A = −〈ψ|d|ψ〉,
which is again a U(1)-valued one-form. Then the Aharon-Anandan’s geomet-
ric phase is given by β = −i ∮

C
A for a curve C in P. Note that the tangent

vectors remains normalized which says the real part of 〈ψ| d
dt
|ψ〉 is identically

zero and thus the bundle is, in fact, a subbundle S1 → S2N−1 → CPN−1

and the connection therein is the common one. The eiβ = e
∮ A is then the

holonomy associated with this connection and it is again an element of U(1).



CHAPTER 4. GEOMETRICAL INTERPRETATION 28

Again, we can consider the nonunitary evolutions which are now described
by curves in the associated complex line bundle E = η ×U(1) C. The expres-
sions for the gauge potential and geometric phase are obviously the same.

Considering a quite general case we can take an inductive limit, i.e. to
allow N → ∞. Then, actually, CP∞ =

⋃
N CPN and we can put P = CP∞.

Now, we can depict the situation we have as follows:

E

���
�������

�� assoc. �� η

����
��

��
��

�

CP∞

L

���
��

��
��

�
�� assoc. �� λ

����
��

��
��

M

As I have shown in the chapter 2, the Aharonov-Anandan phase tends
to the Berry phase in the adiabatic approximation. Thus the geometrical
interpretations in AA approach and BS approach have to be somehow linked.
To see the relation between the bundles λ, η, notice that η is the universal
classifying bundle for U(1) principal fibre bundles [15]. Then, according
to the classifying theorem for such bundles, the desired relation becomes
obvious. The theorem says that any U(1) principal fibre bundle λ over M
is isomorphic to the pull-back bundle f ∗(η) for some continuous function
f : M → CP∞, i.e. the following diagram is commutative

λ

��

η
f∗��

��
M

f 		 CP∞

.

Moreover, the bundle λ ∼= f ∗(η) depends only on the homotopy class [f ] ∈
[M,CP∞] of f , i.e. homotopic maps induce isomorphic bundles if M is
paracompact. It means in turn that it is the topology of the manifold
M which determines all possible U(1) bundles over M . For instance, if
f : M → CP∞ is homotopic to a constant map, then one will obviously
obtain the trivial bundle λ ∼= f ∗(η) ∼= M × U(1). I would like to point out
that the triviality of the bundle does not necessarily imply that the holonomy
group is trivial and hence the geometric phase in this bundle can be nonzero.

The same commutative diagram can be drawn also for the associated line
bundles L and E. E is the universal classifying space for complex line bundles
and thus the bundle λ is obtained as the pullback of f and its topology is
determined by the homotopy class of f .
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To classify all principal (or line) bundles with a given base manifold M ,
we need to know more about the structure of [M,CP∞]. From an elemen-
tary algebraic topology, we know the homotopy structure of CP∞, namely
πi(CP

∞) = πi−1(S
1) holds and it means that the space CP∞ has only the

second homotopy group nontrivial (it equals Z) and thus is the Eilenberg-
MacLane space K(Z, 2) [15]. For such a space we can use the Hurewicz
theorem ([15]) which gives the correspondence with homology groups. Fi-
nally, we obtain the relation [M,CP∞] = [M,K(Z, 2)] = H2(M ; Z). In other
words, the principal (line) bundles, which form a group with respect to the
U(1) (tensor) product, are (as groups) isomorphic to the second cohomology
group H2(M ; Z) (if M is ”normal” = if it has a homotopy type of a CW
complex; see chapter 4 in [15]). The isomorphism is given by the first Chern
number c1(M) = f ∗(c1), where c1 ∈ H1(η,Z) ([?]). In such a way we have
classified all U(1) (complex line) bundles.

The explicit form of the map f : M → CP∞ needed for computing the
geometric phase is obviously fixed by the given Hamiltonian, namely,

f : M � x �→ f(x) = |n(x)〉〈n(x)| ∈ CP∞,

where |n(x)〉 is normalized and H(x)|n(x)〉 = En(x)|n(x)〉 holds. For such f ,
we obtain the BS bundle λ as the pullback bundle f ∗(η) (and also L = f ∗(η)
holds). Moreover, the natural AA connection, as defined earlier, is really
universal in the sense that the adiabatic connection A in the BS parameter
space bundle is obtainable as the pullback of the universal AA connection
A, i.e. A = f ∗(A).

When we are given a system with the family of Hamiltonians which
commute with a time reversal operator T , and if in addition T 2 = +1, then
the Hilbert space can be taken over the real numbers. Then the situation
becomes complete analogous. One only has to replace the complex projective
space CP∞ by real projective space RP∞, Eilenberg-MacLane space K(Z, 2)
by K(Z2, 1) and Chern class c1(E) ∈ H2(M ; Z) by Stiefel-Whitney class
w1(E) ∈ H1(M ; Z2). The corresponding bundles have O(1) = Z2 as their
structure group. In this case the holonomy does not come from a connection,
because the fibres are discrete and thus the parallel transport is unique.
Another, interesting, situation appears when the time reversal operator T
fulfills T 2 = −1 (the case of fermionic time reversal invariant systems - see
[16]). It gives to the Hilbert space a quaternionic structure. In that case, the
AA bundle is Sp(1) → S∞ → HP∞ with the structure being Sp(1) ∼= SU(2),
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the group of unit quaternions. The first nontrivial homotopy group of the
projective quaternionic space is π4(HP

∞) = π3(S
3) = Z. However, also the

higher homotopy groups are nontrivial and hence HP∞ is not an Eilenberg-
MacLane space. In this case, The maps f : M → HP∞ induce SP (1)-
bundles over M which have well-defined second Chern class (it is an element
of H4(M,Z)), but they do not classify all the Sp(1)-bundles. That is the
difference against the complex (and real) case.

4.2 Degenerate case

In comparison to the previous section, I will now discuss the case that
the Hamiltonian H(x), which depends on the multidimensional parameter
x ∈ M , has degenerate eigenvalues. Suppose that En(x), the nth eigenvalue
of H(x) is N -fold degenerate and that no level crossing occurs. Obviously,
the homotopy type of M is (in general) nontrivial. The eigenspaces, cor-
responding to En(x) are N -dimensional and we can pick the single valued
frame, i.e. the orthonormal basis {|ni(x)〉; i = 1, ...,N}. They are trans-
formed into each other by a U(N ) transformations, which can be viewed as
the gauge transformations. The suitable mathematical framework for this
case is given by the U(N ) principal fibre bundle over M . It is a straight-
forward generalization of the nondegenerate case from the preceding section.
Now, in the BS picture, we have a bundle

U(N ) → λN →M

According to the chapter 2, in this BS (adiabatic) approach, the connection
in this bundle (viewed as a u(N )-valued form) locally reads as

Aij(x) = −〈ni(x)|d|nj(x)〉 = −〈ni(x)| ∂
∂xµ

|nj(x)〉dxµ.
The nonabelian phase factor picked up by system when going adiabatically
along a lop C in the parameter space M is then given by a Wilson loop
Uij = Pe

∮
C Aij . This can be again viewed as an element of the holonomy

group of the bundle λN which is now a (sub)group of U(N ). In the case of
the real Hilbert space, the BS bunle has a structure group O(N ).

The generalization of the AA approach to the degenerate case goes as
follows. The desired principal U(N ) bundle is now

ηN : U(N ) → VN (C∞) → GN (C∞),
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where VN (C∞) is the Stiefel manifold, the space of N -frames in C∞. This
is topologized as a subspace of the product of N copies of the unit sphere
in C∞. GN (C∞) is the Grassman manifold, the space of N -dimensional
vector subspaces of C∞. It is topologized as a quotient space via the natural
projection VN (C∞) → GN (C∞).

An equivalent way, how one can see this, is to consider GN (C∞) as the
space of N -dimensional (orthogonal) projection operators Λ, i.e. self-adjoint
operators Λ∗ = Λ which fulfill Λ2 = Λ, TrΛ = N . The space VN (C∞) is
then the space of partial isometries, which are operators ν with the property
that νν∗ = Λ. The canonical projection πN : VN (C∞) → GN (C∞) is given
by πN (ν) = νν∗ = Λ.

The AA bundle possesses a natural connection, it is the Stiefel connection,
which can be in the above notation written in the form τ = −ν∗dν. If we
choose a local section of ηN , which is the same as a choice of the frame
{|ψi(Λ)〉; i = 1, ...,N}, the connection (viewed as the u(N )-valued one-form)
has the local description:

Aij = −〈ψi|d|ψj〉
The nonabelian phase factor (holonomy) picked up during the evolution
described by a loop in GN (C∞) is then given by Uij = Pe

∮
C Aij .

Similarly to the N = 1 case, the bundle ηN is the universal classifying
bundle of U(N ) principal fibre bundles. It means in turn that each BS bundle
λN over a parameter space M can be obtained as the pullback bundle f ∗(ηN )
of the AA bundle ηN , i.e. the following diagram is commutative:

λN

��

ηN
f∗��

��
M

f 		 GN (C∞)

Thus the U(N ) bundles are determined by the homotopy class [M,GN (C∞)].
Similarly, one can consider the real case with O(N ) and (with some con-
straints) the quaternionic case with Sp(N ) as the structure group.

For such a degenerate adiabatic case, the map f is again determined
by the Hamiltonian H(x). It associates to every x ∈ M an eigenprojector
|ψx〉〈ψx| = Λ(x) ∈ GN (C∞), where H(x)Λ(x) = Λ(x)H(x) = En(x)Λ(x).
The connection in the BS bundle λN is then given by the pullback of the
Stiefel connection in ηN , i.e. Aij = f ∗(Aij).
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4.3 Structure of the parameter space

Till now, I have not said anything about what the space of parameters
M might be. It is important both for the classification, i.e. what the
space [M,CP∞] (or alternatively H2(M ; Z)) looks like, and also for the
computation of the geometric phase.

Let us consider that the Hamiltonian describing the system is of the form

H(x) = ε

N2∑
i=1

xiJi,

where (xi) ∈ RN2 \ {0}, ε is a constant with the dimension of energy and,
finally, Ji are generators of a compact semisimple Lie group G. Every Hamil-
tonian describing an N -level system, which can be obviously viewed as an
element of the vector space of N ×N Hermitian matrices, can be written in
such a ”linear” form. Moreover, since also every Ji has to be Hermitian, the
Hamiltonian H(x) can be regarded as an element of the Lie algebra u(N) of
the Lie group U(N). Therefore, the Hilbert space possesses a unitary rep-
resentation of the group G and the example of G = U(N) plays a universal
role.

According to Jordan decomposition ([19]), there exists always an unitary
operator U(x) that diagonalize the Hamiltonian H(x), i.e.

U †(x)H(x)U(x) = HD = diag(E1(x), ..., EN(x))

for the eigenvalues E1(x), ..., EN(x) of the Hamiltonian. Such operators U(x)
are clearly not uniquely defined. I show (along the lines of [17]) that the
parameter space for the Hamiltonian H(x) = U(x)HDU

†(x) is a submanifold
of a flag manifold G/T , where T is the maximal torus.

Since G is assumed to be semisimple, we can choose a Cartan subalgebra
h of a complexification of its Lie algebra gC and consider a corresponding
root decomposition

gC = h ⊕α gα.

Furthermore, G is assumed to be compact and hence its Lie algebra g can
be viewed as the (unique) compact real form of g ([19]). Then we know that
g splits as:

g = ih0 ⊕
⊕
α∈∆+

(R(Xα −X−α) + iR(Xα +X−α)) .
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The elements Xα ∈ gα can be chosen such that [Xα, X−α] = Hα, where Hα

lies in real Cartan subalgebra h0, and, for every two roots α, β, the following
holds. [Xα, Xβ] = 0 if α+β is not a root and [Xα, Xβ] = Nα,βXα+β for some
Nα,β ∈ R with Nα,β = −N−α,−β . The equation above says that each element
X of the Lie algebra g can be expressed as:

X = i
l∑
i=1

yiHi + i
∑
α∈∆+

(zαXα + z̄αX−α)

for some choice of the coefficients yi, zα (l is the rank of G = dimension of h0

= number of nodes in corresponding Dynkin diagramm [19]). Consequently,
using the exponential map g → G, which is diffeomorphism on the connected
component of identity, U(x) can be written as:

U(x) = eX(t) = ei
∑

α∈∆+(zα(x)Xα+z̄α(x)X−α)ei
∑l

i=1 y
i(x)Hi .

Since HD(x) is diagonal, it belongs to the Cartan subalgebra and we may
write HD(x) =

∑l
i=1Ei(x)Hi. Since the generators Hi of the Cartan subal-

gebra commute, we can use the two last equations to simplify the expression
of H(x):

H(x) = ei
∑

α∈∆+(zα(x)Xα+z̄α(x)X−α)HD(x)e−i
∑

α∈∆+(zα(x)Xα+z̄α(x)X−α).

SinceHD(x) plays no role in the expression for geometric phase (in fact can be
chosen to be constant), this proves that the geometric phase is locally given
by the coefficients zα only, which obviously corresponds to the coordinates
of the flag manifold G/T , i.e. the last expression proves that the actual
parameter space M is a submanifold of G/T . Obviously, G/T is naturally
embedded in RN2

as the orbit of adjoint action of G on a regular element
H ∈ ih0.

In fact, we can proceed further, similarly to [17], and to specify M more.
We can consider that the eigenvalues of Hamiltonian is constant. The eigen-
states |n(x)〉 of HD then fulfill the time independent eigenvalue equation
HD(x)|n(x)〉 = En|n(x)〉 and it means, in turn, that the eigenvectors |n(x)〉
are precisely the weight vectors of the present representation of G on the
Hilbert space H. Now, let us define a map Ψ : GC → P for a fixed vec-
tor |ψ〉 ∈ H by Ψ(g) := [U(g)|ψ〉], where U(g) is the representation of the
complexified GC and [U(g)|ψ〉] denotes the ray through U(g)|ψ〉. This map is
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obviously not bijective. But, we can factorize Ψ to a bijective Ψ̂ : GC/P → P,
where

P := {g ∈ GC : U(g)|ψ〉 = c|ψ〉, c ∈ C} .
If we choose the vector |ψ〉 to be the highest weight vector of the repre-
sentation, we see that the Borel subgroup B is a subgroup of P (i.e. P is
parabolic). Therefore, GC/P is a compact submanifold of GC/B. But, the
homogeneous space GC/B is diffeomorphic to the flag manifold G/T and
thus the parameter space M is a homogeneous space GC/P ⊂ G/T in gen-
eral. If it is a proper subgroup or not, it depends on the representation of
G on H. Namely, it depends on the position of the highest weight Λ ∈ h∗,
which uniquely determines the irreducible part of the present representation,
in the Weyl chamber. M is a proper subgroup of G/T iff Λ lies on a wall of
Weyl chamber [19]. One can observe that the map f which maps M to the
projective Hilbert space P is given exactly by Ψ̂.

For example, consider the group G = SU(N + 1) in the standard rep-
resentation on the Hilbert space H. The standard representation is itself
a fundamental representation and therefore its highest weight Λ lies on the
wall. It is easy to see, that the group P , as defined above, equals U(N) and
thus the parameter space is M = SU(N + 1)/U(N) = CPN = P. When
we take SU(3) as the group G and consider its octet representation ([19]),
then the highest weight (which is now a sum of two fundamental weights)
lies in the interior of Weyl chamber and thus P = B in this case. The pa-
rameter space is then M = SU(3)/U(1)×U(1) and the map f maps M into
P = CP 7.

4.4 More on the Berry’s phase

Now, when we know that the Hamiltonian is (usually) parametrized by the
points in a homogeneous space G/P , we can use the structure of the homoge-
neous space to simplify the formulas for Berry phase. Such cases are discussed
in [22] and, in fact, in [21] where a different, ”kinematical”, approach is used.

When the Hamiltonian is diagonalized by U(x) as before, the evolution
of instantaneous basis (with respect to which the system gains only the
dynamical phase) is governed by this operator. Then, treating all eigenstates
simultaneously, the Berry phase is given by the, so called, Berry matrix
U †(x)dU(x). Namely, for the n-th eigenstate and starting basis {|ni(0)〉} the
gauge potential is Aij = 〈ni(0)|U †(x)dU(x)|nj(0)〉. Hence Berry matrix is a
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g-valued one-form and, by projecting on a certain eigenspace, determines the
connection needed for computation of Berry phase. We may write the Berry
matrix in terms of the generators of G. Denoting Si the generators of P and
Ta the generators of G/P , the Cartan forms ηi and ωa are defined by

U †(x)dU(x) = ηk(x)Sk + ωa(x)Ta,

where ηk(x) = ηkµ(x)dx
µ and ωa(x) = ωaµ(x)dx

µ. xµ are, as usual, the
coordinates in M = G/P . Now, the gauge potential for the n-th eigenspace
is given by

Aij = ηkµ(x)〈ni(0)|Sk|nj(0)〉 + ωaµ(x)〈ni(0)|Ta|nj(0)〉.

The Berry phase is then obtained as the curve integral of this expression,
in which we have separated the terms that are fixed by the particular rep-
resentation from the terms that are to be integrated and depends on the
geometry of parameter space. Other additional group structures and prop-
erties of particular representation can be use for further simplifications. A
detailed discussion, both of a general case and also of many examples, is in
[21]. Of course, the Berry connection Aij relates to the natural Riemannian
connection on the homogeneous space G/P . In fact, the BS bundle is a ho-
mogeneous vector bundle and the relation is known [29], but I do not intend
to discuss this here.

4.5 The non-adiabatic case

Suppose again that we are given a manifold M of the parameters x, on which
the Hamiltonian H(x) of the system continuously depends and which repre-
sents the change of the environment. Suppose further that the environment,
and hence the state of the system, will somehow vary and after a time T ,
the environment and also the state of the system will be the same as in the
beginning. It defines a closed curve C = x(t) in the space M of parameters.
Consider that the system was initially in a state described by a vector |ψx(0)〉
in an appropriate Hilbert space H. Then the evolution of the system can
be described by a family of state vectors |ψx(t)〉 which solve the Schrödinger
eguation. In this way, the Schrödinger equation together with the loop C
defines a curve C̃ in the Hilbert space H. Due to the cyclic condition, the
final state vector |ψx(T )〉 differs from the initial |ψx(0)〉 about a phase factor
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Figure 4.2: Aharonov-Anandan geometric phase corresponding to a curve C̃ gen-
erated by a general cyclic evolution of parameters C.

Φ and thus it defines a closed curve in a projective space P and also in the
Grassman manifold GN . It is visualized in figure 4.2.

In this case, the Aharonov-Anandan’s geometric phase is well de-
fined. In any point ψx(t) we can choose a frame (orthonormal basis)
{|ψi(t)〉; i = 1, ...,N} for a suitable N . It defines a section in a Stiefel bundle
VN over a Grassman manifold GN . There we have a canonical connection
defined in such a way that the horizontal subspaces are orthogonal to the
fibres. The nonabelian geometric phase factor is then given as a holonomy of
this connection. Notice the similarity to the motivational example. An or-
thonormal basis {|ψ̃i(0)〉} = {|ψi(0)〉} is parallelly transported along a curve
C̃ to the point |ψx(T )〉, where |ψ̃i(T )〉 =

∑
j Uij |ψ̃j(0)〉. With respect to such

a parallelly transported basis, the system gains only the dynamical phase
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factor. The nonabelian geometric phase factor (holonomy transformation)
Uij is given by the parallel transport.

But, we do not assume an adiabatic change of the parameter x and
thus the frames {|ψi(t)〉} is not posibble to choose being the eigenstates
of the Hamiltonians H(x) in general. Such an exact cyclic evolution (i.e.
corresponding to a closed curve in the projective Hilbert space) allows in
general only the universal AA approach to the geometric phase. In the case
of a nonadiabatic evolution, we cannot define any BS bundle and we cannot
use the Berry’s adiabatic treatment. Although AA approach is very useful
theoretically, the BS approach is preferable for computation. The geometric
phase, in the BS approach, is identified with the associated holonomy of the
loops in the space of parameters and it means that one does not need to solve
the time dependent Schrödinger equation.

Moreover, it is not complicated to show ([24]) that an evolution given by
Schrödinger equation can never be exactly described by any eigenprojector
Λ(x), i.e. the frames {|ψi(t)〉} are never simultaneous eigenvectors of H(x).
It means that the adiabatic condition is never exactly fulfilled and it can be
only a good approximation in some cases. Therefore it would be useful to
develope a Berry-like treatment for the geometric phase also for nonadiabatic
evolutions, at least for some of them.

Suppose accordingly that we have such a physical system that the two
following conditions are satisfied:

1. The cyclic states are the eigenstates of a Hermitian operator H̃ = H̃(x).

2. H̃ is related to the Hamiltonian according to H̃(x) = H(F (x)), for a diffeo-
morphism F : M →M .

For this class of quantum systems, one can still use the classification theorem.
This is realized by replacing f by a map f̃ defined by f̃ = f ◦ F : M → GN .
Then we obtain the (nonadiabatic) bundle λ̃N over the parameter space M as
the pullback bundle λ̃N = f̃ ∗(ηN ). The map f̃ also pullbacks the universal
connection Aij and yields a nonadiabatic Berry connection Ãij = f̃ ∗(Aij)
on λ̃N . The geometric phase is then obtainable as the holonomy of this
connection

Uij = Pe
∮ Aij = Pe

∮
C
Ãij(x) = Pe−

∮
C
〈ni(F (x))| ∂

∂xµ |nj(F (x))〉dxµ

.

In the adiabatic limit, F approaches to the identity map. Hence, F lies in
the connected component of Diff(M) and thus is homotopic to the identity
map. Therefore [f ] = [f̃ ] and the bundles λN and λ̃N have the same topology.
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The conditions 1. and 2. seem to be quite restrictive. But, it turns out
that the first condition is fulfilled for any periodic Hamiltonian [17]. Neither
the necessary nor the sufficient conditions for the existence of F for general
cyclic Hamiltonians are known, but there are examples where F exists and
our analysis applies, e.g. the example of cranked Hamiltonian.
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Simple examples

In this section, I show how the formalism derivated in the previous chapters
applies to simple examples. These, related to the adiabatic case are treated
mainly according to [22], [5] and [20]. In the nonadiabatic case, I follow the
lines of [27] and [28].

5.1 The adiabatic nondegenerate case

Let me review the example of spin-1
2

particle in an external magnetic field.
Assume that the Hamiltonian is given simply by H(x) = x · S, where x ∈
R \ {0} and S is a spin-1

2
operator ([Si, Sj] = iεijkSk) on C2. The actual

group G is obviously SU(2) and its representation on the Hilbert space is the
standard one. Thus the Hamiltonian can be parametrized by SU(2)/U(1).
The Hamiltonian is already in the linear form and thus we know that can be
diagonalized by an operator U(x) that is given by e−iz·S, where z3 = 0, i.e.
U(x) is not generated by any element from the Cartan subalgebra. Our task
is to determine this operator, i.e. z. One can show that z ⊥ x has to hold
and, finally, |z| = 1. The energy eigenvalues are precisely the eigenvalues s
of the element S3 of the Cartan subalgebra, which are weights of the present,
standard, representation. These are easy to be computed: s = −1

2
, 0, 1

2
. The

corresponding bundles are given by associating

x �→ |s(x)〉 := U(x)|s〉.
The connection in this bundle is given by

As = −〈s|d(−iz · S)|s〉 = −i〈s|d(z1)S1 + d(z2)S2|s〉.

39
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I did not separate the terms coming from representation and the geometrical
terms, because in such a nondegenerate case, we can use the Stoke’s theorem
to proceed further. Using a spherical coordinate system one shows that
Fs = sS(x), where S(x) is the ares form on the sphere in x. It means that at
the energy level E = 0, the Berry phase vanishes. For the energies E = ±1

2
,

it is given by the solid angle formula γ± 1
2

= ±Ω(C).

5.2 The adiabatic degenerate case

An another nice example is the system described by the Hamiltonian H(x) =
xiεijkσj ⊗ σk. Using, de facto, the same approach, one can compute the
eigenvalues to be −2, 0, 2 and a further investigation reveals that the Berry
phase vanishes for E = ±2. For the eigenvalue E = 0, which is two-
degenerate, one obtains the Berry phase as a two times two diagonal matrix
that has precisely the terms ±Ω(C) on the diagonal [23].

A simple example of a nonabelian Berry phase is introduced in [5]. The
Hamiltonian is considered to be given by H = R(t)HDR

−1(t), where HD is
a constant diagonal matrix with nth times degenerate eigenvalue E = 0 and
R(t) := R(θ(t)) is the SO(n+ 1) rotation, i.e.

R(θ) = eiθnTn,n+1 · · · eiθ2T2,n+1e
iθ1T1,n+1

,

where Ti,n+1 are the generators of SO(n + 1)/SO(n). One of the intuitive
explanation of the phenomenon of geometric phase can be such that the
embedding of the relevant subgroup P into G varies in time, which can
be seen on this example. The parameter space is, of course, the sphere
Sn = SO(n+1)/SO(n) and the operator responsible for the geometric phase
is R(θ) now. The gauge potential is

Aij = −〈ni(θ)|d|nj(θ)〉

which is now a so(n)-valued form. For n = 3, we can find explicitly

A = sin θ1T12dθ2 + (sin θ1 cos θ2T13 + sin θ2T23) dθ3.

The berry phase is then, as usual, obtained as the integral Uij = −i ∮
C
Aij .

A wide range of interesting adiabatic examples can be found and easily
computed, see for instance [?].
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5.3 The nonadiabatic case

Let us consider again a quantum system whose Hamiltonian is a function of
generators of a compact semisimple Lie group G. Then, as I explained in
the previous chapter, every Hamiltonian, which in the linear representation
reads H0 = β · X, can be expressed as follows

H0 = εei
∑

α∈∆+(zαXα+z̄αX−α) (a · H) e−i
∑

α∈∆+(zαXα+z̄αX−α),

where a · H is an arbitrary element of the Cartan subalgebra. Suppose
that the systems is initially in an eigenstate |m〉 of H, i.e. H|m〉 = m|m〉
holds. Now, I will be concerned with a class of the systems with a cranked
Hamiltonian. It is such a time dependent Hamiltonian that arise from the
initial one by the adjoint action of a one-parameter group, i.e.

H(t) = e−iωtn·HH0e
iωtn·H,

where ω is called the cranking rate and n the cranking direction.
For such systems, the time dependent Schrödinger equation is exactly

solvable. It is due the fact that through a unitary transformation |ψ(t)〉 =
e−iωtn·H|η(t)〉, we turn to the intrinsic frame. the evolution of |η(t)〉 is now
governed by the time independent Hamiltonian of the form

H(ω) = H0 − ωn · H = ε

(∑
α

βαEα +
∑
i

(
βi − ω

ε
ni

)
Hi

)
.

Then the state |ψ(t)〉 of the system evolves according to

|ψ(t)〉 = U(t)|ψ(0)〉 = e−iωtn·He−iH(ω)t|ψ(0)〉.
Now, using the structure of semisimple compact algebras one compute

the final expression for the geometric phase [27] to be

ϕg = −2πn · m
(

1 − 〈ηm|n · H|ηm〉
n · m

)
.

This reveals that the phase is related to the expectation value of operators
from Cartan algebra along the cranking direction n. Further, it depends
on the geometry of parameter spaces n,m, on the ray ηm generated by the
Hamiltonian and on the cranking rate ω.
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Let me come back to the example of a spin 1
2
-particle in a rotating

magnetic field. It is obvious that this example belongs to the class with
a cranked Hamiltonian. In this example, it is possible to proceed in a bit
different direction (as in [28]). Once we have constructed H(ω), we can define
the map F : S2 → S2 from the previous chapter by setting H(ω) ∝ H(F (x)).
Thus it is given by equations

S2 � (θ, ϕ) �→ (θ̃, ϕ̃) ∈ S2

cos θ̃ =
b

ω̃
(cos θ − ω

b
), sin θ̃ =

b

ω̃
sin θ, ϕ̃ = ϕ.

But, one has to investigate if such defined map F is smooth. It need not be
even single valued. For this case, it is a diffeomorphims for every ω unless
the Larmor frequency. Thus one obtains immediately the result

Ã = −k(1 − cos θ̃)dϕ

and the Berry phase is obtained from holonomy.



Chapter 6

Conclusion

In the first part of my work, I have introduced an example from the classical
physics. Namely the example of the rotating globe. Although it does not
refer to the quantum mechanics, this example is quite illustrative. The
phenomenon, which here appears, is very similar to the one in quantum
mechanics. Namely, the additional angle of rotation, referred to as the
geometric phase, arises due to the parallel transport of the instantaneous
basis around a loop on the sphere which represents the globe. In fact, it is a
consequence of the curvature of sphere.

In the following, I have introduced the Berry’s, adiabatic, concept of
the geometric phase and then the universal, Aharon-Anandan’s, approach.
The geometric phases, defined in different way, are shown to be the same
in the adiabatic limit. The construction of Aharon and Anandan has deep
theoretical implications, but do not provide any calculational useful formulas,
because one has to solve the time independent Schrödinger equation. In the
case of Berry phase, there are such formulas accessible, but, on the other
hand, the adiabatic conditions are never exactly fulfilled.

Then, I have mentioned several experiments, which manifest the geomet-
ric phase in rather different ways. In the case of coiled optical fibre, the local
curvature of the parameter space plays the crucial role and in the case of
Aharon-Bohm effect, the nontriviality of the fundamental group of param-
eter space is responsible for the additional phase factor. The example of
three-level system is totally different in that the quantum state do not evolve
according to the Schrödinger dynamics, but is made to evolve by adjusting
some parameters of interferometer. To conclude this part of my work, I have
introduced some applications of the geometric phase.

43
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I have devoted the most effort to the fourth chapter, where I have focused
on the geometrical interpretation of the geometrical interpretation. There is a
nice similarity to the motivational example. Now, in he quantum mechanics,
the geometric phase arise due to the parallel transport of the instantaneous
basis of Hilbert space. It is precisely the difference between the initial and
the transported basis, which is known as the holonomy. In the geometric
interpretation, the correspondence between the phase found by Berry and the
one found by Aharon and Anandan becomes evident. For a given parameter
space, the possible bundles over it were classified. On the other hand, when
starting with a (suitable) Hamiltonian, the possible spaces of parameters
were found. For the adiabatic case, I have further simplified the formulas
for the geometric phase using the structure of Lie algebras. Finally, I have
showed that the Berry’s derivation can be used also in some nonadiabatic
cases. As a conclusion, I have introduced several simple examples, which
illustrate the developed formalism.



Bibliography

[1] S. Pancharatnam, ”Generalized theory of interference and its applications”,
Proc. Indian Acad. Sci. A 44 (1956) 247-262.

[2] M. V. Berry, ”Quantal phase factors accompanying adiabatic changes”, Proc.
R. Soc. Lond. A 392 (1984) 45-57.

[3] Y. Aharonov and J. Anandan, ”Phase change during a cyclic quantum evolu-
tion”, Phys. Rev. Lett. 58 (1987) 1593-1596.

[4] Arvind, K. S. Mallesh, N. Mukunda, ”A generalized Pancharatnam geometric
phase formula for three-level quantum systems”, J. Phys. A 30 (1997) 2417-
2431.

[5] F. Wilczek, A. Zee, ”Appearence of gauge structure in simple dynamical
systems”, Phys. Rev. Lett. 52 (1984) 2111-2114.

[6] A. Tomita, R. Y. Chiao, ”Observation of Berry’s topological phase by use of
an optical fibre”, Phys. Rev. Lett. 57 (1986) 937-940.

[7] R. Y. Chiao, A. Antaramian, K.M. Ganga, H. Jiao, s.R. Wilkinson and H.
Nathel, ”Observation of a topological phase by means of a nonplanar Mach-
Zehnder interferometer”, Phys. Rev. Lett. 60 (1988) 1214-1217.

[8] T. Bitter and D. Dubbers, ”Manifestation of Berry’s topological in neutron
spin rotation”, Phys. Rev. Lett. 59 (1987) 251-354.

[9] Y. Hasegawa, M. Zawisky, H. Rauch and A.I. Ioffe, ”Geometric phase in
coupled neutron interference loops”, Phys. Rev. A 53 (1996) 2486-2492.

[10] R.Y. Chiao and Y.S. Wu, ”Manifestations of Bery’s topological phase for the
photon”, Phys. Rev. Lett. 57 (1986) 933-936.

45



BIBLIOGRAPHY 46

[11] Y. Aharonov, D. Bohm, ”Significance of electromagnetic potentials in the
quantum theory”, Phys. Rev. 115, No. 3 (1959).

[12] B.C. Sanders, H. de Guise, S.D. Barlett, W. Zhang, ”Geometric phase of
three-level systems in interferometry”, Phys. Rev. Lett. 86 (2001) 369-372.

[13] P.G. Kwiat, R.Y. Chiao, ”Observation of a nonclassical Berry’s phase for the
photon”, Phys. Rev. Lett. 66 (1991) 588-591.

[14] J. Anandan, L. Stodolsky, ”Some geometrical considerations of Berry’s
phase”, Phys. Rev. D 35 (1987) 2597-2600.

[15] Allen Hatcher, book ”Algebraic topology” (2001).

[16] J.E. Avron, L. Sadun, J. Segert, B. Simon, ”Topological invariants in Fermi
systems with time-reversal invariance”, Phys. Rev. Lett. 61 (1988) 1329-1332.

[17] A. Mostafazadeh, ”Geometric phase, bundle classification and group repre-
sentation”, J. Math. Phys. 37 (1996) 1218-1233.

[18] K. Durstberger, ”Geometric phases in quantum theory” Diplomarbeit, Uni-
Wien (2002).

[19] W. Fulton, J. Harris, book ”Representation theory”. Springer-Verlag (1991).

[20] B. Simon, ”Holonomy, the quantum adiabatic theorem, and Berry’s phase”,
Phys. Rev. Lett. 51 2167-2169 (1983).

[21] N. Mukunda, ”Quantum kinematic approach to the geometric phase II. The
case of unitary group representations”, Ann. of Phys. 228 (1993) 269-340.

[22] S. Giller, P. Kosinski and L. Szijmanowski, Int. J. Mod. Phys. A 4, 1453
(1989).

[23] S. Giller, C. Gonera, P. Kosinski and P, Maslanka, Phys. Rev. A 48, 907-919
(1993).

[24] A. Bohm, L.J. Boya, A. Mostafazadeh and G. Rudolph, ”Classification theo-
rem for principal fibre bundles, Berry’s phase, and exact cyclic evolution”, J.
of Geom. and Phys. 12 (1993) 13-28.

[25] N. Mukunda, ”Quantum kinematic approach to the geometric phase I. Gen-
eral formalism”, Ann. of Phys. 228 (1993) 205-268.



BIBLIOGRAPHY 47

[26] M.A. Nielsen and I.L. Chuang, Quantum computation and quantum informa-
tion. Cambridge University Press, Cambridge, 2000.

[27] S.J. Wang ”Nonadiabatic Berry’s phase for a quantum system with a dynam-
ical semisimple Lie group”, Phys. Rev. A 42 (1990) 5103-5106.

[28] A. Mostafazadeh, A. Bohm, ”Topological aspects of the non-adiabatic Berry
phase”, (1993) arXiv: hep-th/9309060.

[29] I. Kolar, P.W. Michor,J. Slovak, Natural operations in differential geometry,
Springer-Verlag, 1993.


