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Abstract

It is the purpose of this thesis to investigate the stability and energy spectra of

the non-relativistic hydrogen atom in four-dimensional spaces. The additional spatial

dimension is considered to be either infinite or curled-up in a circle of radius R.

After a short historical introduction, we study the case of spaces with an infinite

extra dimension. We solve the Schrödinger equation of the hydrogen atom and analyze

the results. Considerable attention is devoted to discussion of the three qualitatively

distinct solutions that appear. We argue that there is no stable hydrogen atom in this

case.

The second part of this work deals with four-dimensional spaces, where one of the

space-like dimensions is compactified, i.e. it has the topology of a circle at a very small

radius. We solve the Schrödinger equation and explore the main task, namely, how an

additional curled-up dimension affects the spectrum of hydrogen atoms. Finally, we argue

that if the potential is sufficiently strong, the hydrogen atom is no longer stable.
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1 Introduction

Is it not there first proved that there are no more than three dimensions,

since Three is everything, and everywhere?

Galileo Galilei (referring to Aristotle’s ’On The Heavens’),

Dialogue Concerning the Two Chief World Systems (1632) [8, 17]

The idea of extra spatial dimensions has a long and rich history. Its origin lies in the

search for a unified description of the forces observed in nature. An early attempt traces

back to the Finnish theoretical physicist Gunnar Nordström (1914), who proposed, in

the context of his theory of gravity, a five-dimensional theory to simultaneously describe

electromagnetic and gravitational forces [26]. This theory was the first known example of

a metric theory of gravitation. However, as it turned out, it was not in agreement with

observation and experiment.

After the invention of general relativity, a German mathematician and physicist

Theodor Kaluza noticed that gravitational and electromagnetic interactions can be simul-

taneously described by a five-dimensional generalization of Einstein’s theory [21]. Giving

this idea a precise formulation in 1926, a Swedish theoretical physicist Oskar Klein fur-

ther proposed that the extra dimensions can be curled-up in a circle of a very small

radius [22]. Thus, he resolved the apparent contradiction to the fact that we observe only

three space-like dimensions and one time-like. But also the Kaluza-Klein theory, lacking

of experimental implications and suffering from a number of faults, did not unify the two

fundamental forces of gravitation and electromagnetism, failed in its purpose and was

essentially abandoned for a couple of decades.

During the mid-seventies, the emergence of string theory made the old idea of extra

spatial dimensions come alive, since the existence of additional dimensions is one of its

requirements. Because string theory is the most promising candidate for a consistent

theory of quantum gravity, the study of higher-dimensional problems is of big importance.

One of the basic and most interesting questions concerning problems in higher-

dimensional spaces is the stability of atoms. The first investigation is due to Ehren-

fest [12]. In his paper from 1919, he studies among other things the stability of planetary

orbits and the Bohr model of hydrogen atom in higher-dimensional spaces. Thereafter,

many interesting investigations followed [11, 15, 10, 27, 19, 23, 31].



2 1 INTRODUCTION

Overview of the thesis

In the present work, we will study the stability and energy spectra of the non-

relativistic hydrogen atom in four-dimensional spaces. The first part of the thesis is

devoted to the hydrogen atom in spaces with an infinite additional space-like dimension.

Although there are some papers (especially [19]) dealing with the topic of stability of

hydrogen atom in the general case of n-dimensional spaces, we will give a more detailed

discussion of the four-dimensional case that we are interested in. We will solve the defining

Schrödinger equation and discuss the results.

As it is found in this work that the hydrogen atom is not stable in infinite four-

dimensions, it is important to mention (see note at end of section 2) that there are articles

stating the existence of a stable hydrogen atom in higher dimensions (e.g. [10], [25], [6]).

The physically important point is that the potential is considered to be proportional

to 1/r, irrespective of the the number of spatial dimensions. This is, however, not the

potential that would correspond to the solution of Maxwell’s equations in n-dimensional

space. Hence, the immediate consequence of such an approach is the modification of

Maxwell’s equations in higher dimensions.

The second part of this thesis deals with four-dimensional spaces, where one of the

space-like dimensions is compactified, i.e. it has the topology of a circle at a very small

radius. We will start by explaining a simple method used for treatment of spaces with

such topology. Then, we will solve the Schrödinger equation and explore the main task,

namely, how an additional curled-up dimension affects the spectrum of hydrogen atoms.

For this purpose, we use time-independent perturbation theory and calculate corrections

to energy eigenvalues.

Finally, we will argue that if the potential is sufficiently strong, the hydrogen atom is

no longer stable. To show this, we will employ a trial function and see that the continuous

energy spectrum extends from zero to minus infinity.

The next section is devoted to discussion of the results. Lastly, some possibilities for

further development are presented. The thesis also contains several appendices covering

some support material of mainly mathematical character.
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2 Infinite Extra Dimension

In this section, we take up the case of four-dimensional spaces, where the extra space-like

dimension is considered to be extended. We will solve the Schrödinger equation for the

hydrogen atom and discuss the results. It will be shown that we must distinguish three

cases, differing in the nature of solutions.

It turns out that in the so-called repulsive and weak case there are no bound states,

since there are no physically acceptable solutions to the Schrödinger equation if the en-

ergy is taken as negative. In the strong case on the other hand the energy spectrum is

continuous and extends from zero to minus infinity. Thus, in the presence of an infinite

extra dimension, the hydrogen atom is not stable.

Next, we present an alternative treatment of how to decide the question of stability of

the studied system. Namely, we use a trial function to show that the continuous spectrum

is unbounded from below. Lastly, we make some comments regarding articles, in which

the hydrogen atom in N -dimensional space is defined by the potential proportional to 1/r.

2.1 Solution of a four-dimensional hydrogen atom

Let us start with the Schrödinger equation for a closed system of two non-relativistic

point masses interacting via a central force:

(

−1

κ
∇2 + V (r)

)

ψ(r) = Eψ(r). (2.1)

where κ ≡ 2m/~2. 1 Since the potential is centrally symmetric, hyperspherical coordinates

are best adapted to the problem (figure 1):

x = r sin η sin θ cosφ,

y = r sin η sin θ sinφ,

z = r sin η cos θ,

w = r cos η.

(2.2)

Thus, we are to find the expression for the Laplacian operator in hyperspherical coordi-

nates. The result is (appendix A):

∇2 =
∂2

∂r2
+

3

r

∂

∂r
− L2(3)

r2
, (2.3)

1We shall use this notation throughout the rest of the work.
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ρ

(x, y, z)

w

η

Figure 1: Hyperspherical coordinates in four-dimensional space.

where

L2(3) = − 1

sin2 η

[

∂

∂η

(

sin2 η
∂

∂η

)

+
1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

]

(2.4)

is the square of the angular momentum operator on a 3-sphere (see appendix A).

The general solution of Poisson’s equation yields its potential as a function of the

radial distance r to the source. The potential energy in four-dimensions is thus given

by (appendix B):

V (r) = −e
2

r2
, (2.5)

where e2 is the four-dimensional charge (with the unit energy × length2). Hence, our

Hamiltonian has the form

Ĥ =
1

κ

(

∂2

∂r2
+

3

r

∂

∂r
− L2(3)

r2

)

− e2

r2
, (2.6)

and we can rewrite the Schrödinger equation (2.1) as:

[

∂2

∂r2
+

3

r

∂

∂r
− L2(3)

r2
+ κ

(

E +
e2

r2

)]

ψ(r) = 0. (2.7)

As in the case of the three-dimensional hydrogen atom (and generally for any spherically

symmetric potential), the Schrödinger equation can be separated into two following parts

- the first one is an ordinary differential equation for the radial function, the other is a

partial differential equation for the angular function. Thus, we make the Ansatz ψ(r) =
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Figure 2: Modified Bessel functions of the first and second kind I0, I1 and K0, K1

respectively.

R(r)Y (3)(η, θ, φ). After the separation of the angular variables in (2.7), we obtain for the

radial function R(r) the equation

[

d2

dr2
+

3

r

d

dr
− l(l + 2)

r2
+ κ

(

E +
e2

r2

)]

R(r) = 0, (2.8)

where we have applied the fact that the eigenvalues of L2(3) are given by [28]:

L2(3)Y
(3)
l (η, θ, φ) = l(l + 2)Y

(3)
l (η, θ, φ), l = 0, 1, 2, . . . . (2.9)

The functions Y
(3)
l are the hyperspherical harmonics on a 3-sphere. For E < 0, e.g. for

bound states, we use the abbreviations

α2 = −κE, ν2 = l(l + 2) + 1 − λ2, with λ2 = κe2. (2.10)

Setting R(r) ≡ χ(r)/r, we replace equation (2.8) by an equivalent radial equation

r2
d2χ(r)

dr2
+ r

dχ(r)

dr
− (α2r2 + ν2)χ(r) = 0. (2.11)

Equation (2.11) is the modified Bessel equation. The solutions are the modified (or

sometimes called hyperbolic) Bessel functions of the first and second kind Iν(αr) and

Kν(αr), respectively. The functions I0, I1, K0 and K1 are shown in figure 2.
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Our boundary condition at infinity eliminates the solutions Iν , since Iν/r diverge

exponentially for large values of r ([1], p. 377):

Iν(αr)

r
∼ 1

r

eαr

√
2παr

. (2.12)

It remains for us to discuss the second independent solution to equation (2.11), the mod-

ified Bessel functions of the second kind Kν . Three cases must be considered according

to whether the parameter ν2 belongs to the interval 〈1,∞), 〈0, 1) or (−∞, 0). We shall

call these cases repulsive, weak and strong, respectively. This nomenclature naturally

corresponds to the character of the effective potential energy (from (2.8))

Veff =
1

κ

l(l + 2)

r2
− e2

r2
=

1

κ

ν2 − 1

r2
. (2.13)

2.1.1 Repulsive case

First, let us consider ν2 taking values from the interval

ν2 ≥ 1 i.e. κe2 − l(l + 2) ≤ 0. (2.14)

In this case the Bessel functions of the second kind Kν are too divergent at the origin

and the corresponding radial functions Kν (αr) /r are not square integrable. Indeed, the

lowest-order terms in the series expansion of Kν (αr) are given by ([7], p. 711):

Kν(αr) = 2ν−1(ν − 1)!(αr)−ν + . . . , ν > 0, (2.15)

with Kν = K−ν . Thus, expanding the integrand of the normalization integral in a series,

the lowest-order term is proportional to

r3(rν/r)2 = r1−2ν . (2.16)

In order for the integral to converge, the power of r must be greater than −1. But this

condition is not met (recall ν2 ≥ 1) and the wave function constructed with this solution

cannot be accepted.

Let us recall that we search only for bound states. Considering, however, also un-

bounded states, the functions Iν might correspond to some solution.
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2.1.2 Weak case

Next, we restrict ν2 to the interval

0 ≤ ν2 < 1 i.e. 0 < κe2 − l(l + 2) ≤ 1. (2.17)

With the exception of K0, the lowest-order terms in the series expansion of Kν (αr) are

again given by (2.15). For ν2 = 0 the expansion is as follows ([7], p. 711):

K0(αr) = − ln (αr) − γ + ln 2 + . . . . (2.18)

with γ being a constant. 2 Looking at (2.16) we find out that the problem with con-

vergence at the origin vanished, since the power of r in the normalization integral takes

values from the interval (−1, 3). For large r, the asymptotic expansion of Kν(αr) is given

by ([7], p. 717):

Kν(αr) ∼
√

π

2αr
e−αr (2.19)

and the wave function constructed with Kν is square integrable. Thus, it seems that it

could be accepted as eigenfuction.

However, this is not the case. The reason is as follows: Because the Hamiltonian is a

Hermitian operator, the equality

〈ψ1(r)|Ĥ|ψ2(r)〉 = 〈ψ2(r)|Ĥ|ψ1(r)〉∗ (2.20)

must hold for any states ψ1(r) and ψ2(r). Using integration by parts (the explicit form

of Hamiltonian is given by (2.6)) we obtain:

〈ψ1(r)|Ĥ |ψ2(r)〉 − 〈ψ2(r)|Ĥ |ψ1(r)〉∗ =

[

(

−ψ∗
1

dψ2

dr
+

dψ∗
1

dr
ψ2

)

r3

]∞

0

. (2.21)

Thus, if Ĥ is Hermitian, the right-hand side of (2.21) must vanish. The boundary condi-

tion at infinity is satisfied (see (2.19)), but that at the origin is not. For, taking the wave

functions constructed with Kν :

ψ1(r) ∝
1

r
Kν (α1r) , ψ2(r) ∝

1

r
Kν (α2r) , (2.22)

2It is the Euler-Mascheroni constant defined by γ = limn→∞

`
Pn

m=1 m−1
− lnn

´

= 0.57721566 . . . ,
[7], p. 312.
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and using the series expansion of Kν (equation (2.15)), we find the terms in the square

bracket to be proportional to r−2ν . Accordingly, the condition ensuring that the boundary

terms at zero vanish is ν < 0. But this is outside the interval (2.17). Similarly, for ν = 0

we take the expansion (2.18) and find the terms to be proportional to ln (αr) (1− ln (αr)).

Consequently, the Hamiltonian is not Hermitian and we must again reject this solution

as unacceptable.

2.1.3 Strong case

Finally, let us choose ν2 taking values from the interval

ν2 < 0 (or ν ∈ iR− {0}) i.e. κe2 − l(l + 2) > 1. (2.23)

Now we will show that the wave functions constructed with Ki|ν| form an orthonormal

set. We must, however, choose a suitable discrete subset of energy eigenvalues.

Consider two solutions χ1(r), χ2(r) of equation (2.11), corresponding to two values

of energy E1, E2, represented by (see (2.10)):

α1 =
√

−κE1, α2 =
√

−κE2, E1, E2 < 0. (2.24)

Let us take equation (2.11), corresponding to the solution χ1, and multiply it by χ2/r.

Subtracting the same equation, corresponding to χ2 and multiplied by χ2/r, we obtain,

by integrating this expression:

∫ ∞

0

(

rχ2
d2χ1

dr2
− rχ1

d2χ2

dr2
+ χ2

dχ1

dr
+ χ1

dχ2

dr
− rα2

1χ2χ1 + rα2
2χ1χ2

)

dr

=

∫ ∞

0

[

χ2
d

dr

(

r
dχ1

dr

)

− χ1
d

dr

(

r
dχ2

dr

)]

dr − (α2
1 − α2

2)

∫ ∞

0
rχ1χ2dr

=

[

rχ2
dχ1

dr
− rχ1

dχ2

dr

]∞

0

− (α2
1 − α2

2)

∫ ∞

0
rχ1χ2dr = 0. (2.25)

Using the fact that

ψ1(r) ∝
χ1(r)

r
=

1

r
Ki|ν| (α1r) , ψ2(r) ∝

χ2(r)

r
=

1

r
Ki|ν| (α2r) , (2.26)

and noting that there are no boundary terms at infinity (see (2.19)), the last line of (2.25)
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gives us the scalar product:

∫ ∞

0
rχ1χ2dr =

∫ ∞

0
r3ψ1(r)ψ2(r)dr = 〈ψ1(r)|ψ2(r)〉 =

1

α2
1 − α2

2

lim
r→0

[

rKi|ν|(α2r)
dKi|ν|(α1r)

dr
− rKi|ν|(α1r)

dKi|ν|(α2r)

dr

]∞

0

. (2.27)

The lowest-order term in the series expansion of Ki|ν| is, according to [13]:

Ki|ν|(αr) ≈ − 1

|ν|2

√

|ν|π
sinh |ν|π sin

(

|ν| ln
(αr

2

)

− arg

[

Γ(i|ν| + 1)

]

)

. (2.28)

Inserting this into (2.27) produces

〈ψ1(r)|ψ2(r)〉 =
π

|ν|2 sinh (|ν|π)

sin
(

|ν| ln α1
α2

)

α2
1 − α2

2

(2.29)

Fixing some certain value |E0| and forming the following discrete subset of energy eigen-

values

E = −|E0|e2πn/|ν|, E0 ∈ R, n ∈ Z, (2.30)

we have from (2.24):

α1 =
√

κ|E0|eπn1/|ν|, α2 =
√

κ|E0|eπn2/|ν|, n1, n2 ∈ Z, (2.31)

Inserting α1 and α2 into (2.27) yields an orthogonality relation:

〈ψ1|ψ2〉 =











π

2κ|ν||E0| sinh (|ν|π)
for n1 = n2

0 for n1 6= n2

, (2.32)

where we have used the l’Hôpital’s rule for n1 = n2. The eigenstates are thus given by

ψν(r) = N (ν)
Kν (αr)

r
, (2.33)

where α =
√

κ|E0|eπn/|ν| and with

N (ν) =
π

2κ|ν||E0| sinh (|ν|π)
(2.34)

being a normalization factor.



10 2 INFINITE EXTRA DIMENSION

Note that we can obtain the above orthogonality relation easily using ([18], p. 686):

∫ ∞

0
rKν (α1r)Kν (α2r) dr =

π(α1α2)
−ν(α2ν

1 − α2ν
2 )

2 sin (νπ)(α2
1 − α2

2)
,

|Re ν| < 1, Re (α1 + α2) > 0, (2.35)

Clearly, if 0 ≤ ν2 < 1 (the weak case), then (2.35) does not lead to any orthogonal

relation.

Again, we can check for Hermiticity of Ĥ. By inserting (2.28) into the the right-hand

side of equation (2.21), together with (2.26), we obtain

(

−ψ∗
1

dψ2

dr
+

dψ∗
1

dr
ψ2

)

r3 ≈ π

|ν|2 sinh (|ν|π)
sin

(

|ν| ln α1

α2

)

(2.36)

and the boundary terms in zero vanish by inserting (2.31).

However, the energy eigenvalues, corresponding to the wave functions constructed

with Kν , can be arbitrarily large. Therefore, the continuous spectrum (recall |E0| ∈ R+)

is unbounded from below and the atom is not stable.

It is also worth noting that the absence of a lower bound in the energy spectrum can

also be deduced from the following property of the Kν functions. Because the argument of

the sine in equation (2.28) grows without limit as r approaches the origin, this oscillating

function has an infinite number of zeros. Since the wave function of the ground state can

have no zeros, the ground state corresponds to the energy E = −∞, i.e. the spectrum is

unbounded from below and the particle falls on the nucleus (cf. [24], p. 116).

2.2 Trial function

In the following we will argue that the energy of our system can take arbitrarily large

negative values if ν2 < 0. More precisely, we will show that

lim
α→∞

〈E〉 = −∞, (2.37)

where

〈E〉 =
〈ψtrial|Ĥ |ψtrial〉
〈ψtrial|ψtrial〉

(2.38)
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is the mean value of energy for a system described by the wave function

ψtrial(r) = rµe−αr. (2.39)

Note that by inserting our trial function (2.39) into equation (2.21) we can easily verify

that the Hamiltonian is Hermitian. Normalization gives us

〈ψtrial|ψtrial〉 =

∫ ∞

0
r3r2µe−2αrdr =

Γ(2µ+ 4)

(2α)2ν+4
, (2.40)

where we have used the integral

∫ ∞

0
xνe−axdx =

Γ(ν + 1)

aν+1
, a > 0, ν > −1. (2.41)

By inserting the Hamiltonian (2.6) into the numerator of (2.38), we obtain:

〈ψtrial|Ĥ|ψtrial〉 = −1

κ
〈ψtrial|∇2|ψtrial〉 − e2〈ψtrial|

1

r2
|ψtrial〉. (2.42)

Thus, it remains for us to evaluate

〈ψtrial|
1

r2
|ψtrial〉 =

∫ ∞

0
r3r−2r2µe−2αrdr =

Γ(2µ+ 2)

(2α)2ν+2
(2.43)

and

〈ψtrial|∇2|ψtrial〉 =

∫ ∞

0
r3r2µe−2αr

(

µ(µ+ 2)

r2
− α

2µ+ 3

r
+ α2

)

dr

= µ(µ+ 2)
Γ(2µ+ 2)

(2α)2ν+2
− α(2µ+ 3)

Γ(2µ+ 3)

(2α)2ν+3
+ α2 Γ(2µ+ 4)

(2α)2ν+4
. (2.44)

The most restrictive condition imposed on µ is given by equations (2.43) and (2.44).

Namely, we must have

µ > −1 (2.45)

in order to get convergent integrals. Inserting (2.40), (2.43) and (2.44) into (2.38) pro-

duces:

〈E〉 =
α2

κ

µ+ 3 − 2κe2

(µ+ 1)(µ+ 3)
=
α2

κ

µ+ 1 + 2ν2

(µ+ 1)(µ+ 3)
. (2.46)
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Now, for any ν2 < 0 we can always choose µ so that the numerator of (2.46) is negative.

Consequently, the energy can take arbitrarily large negative values as α → ∞. For this

to hold, the condition imposed on µ is:

µ < −1 − 2ν2. (2.47)

On the other hand, if ν2 ≥ 0, this cannot be achieved for any permissible value of µ.

2.3 Note

If one assumes the potential to be ∼ 1/r, independent of the spatial dimension N , then it

is possible to have stable atoms in higher infinite dimensions (see e.g. [10, 25, 6, 2, 33]).

However, this is not the potential which would correspond to the solution of Maxwell’s

equations in N-dimensional space (and therefore this approach does not lead to a Gaussian

law for charges - appendix B). As a consequence, Maxwell’s equations have to be modified

in higher dimensions.

The solution of the corresponding Schrödinger equation involves a procedure which

is similar to that for the standard three-dimensional hydrogen atom. The radial part of

the wave function is [25]:

Rnl(ρ) = N (n, l)e−ρ/2ρlL
(2l+N−2)
n−l−1 (ρ) , (2.48)

where

ρ =
r

r0[n+ (N − 3)/2]
, with r0 = ~

2/2me2 (2.49)

The functions L
(α)
n (t) are the generalized Laguerre polynomials, defined as

L(α)
n (t) ≡

n
∑

j=0

(

n+ α

n− j

)

(−t)j
j!

=
(−1)αLα

n+α (t)

(n+ α)!
, (2.50)

with α being a non-negative integer. The allowed values of the quantum numbers n, l

are:

n = 1, 2, 3, . . . , (2.51)

l = 0, 1, . . . , n− 1. (2.52)
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The energy eigenvalues En are given by

En = − E0

[n+ (N − 3)/2]2
, (2.53)

with the ground state energy E0 = me4/2~
2.

For papers dealing with some other quantum-mechanical models in higher dimen-

sional spaces see, for example, [3, 4, 5] and references therein.
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3 Compactified Extra Dimension

Now that we know how the hydrogen atom behaves in infinite spaces, we can investigate

what happens if one of the dimensions is compactified, i.e. it has the topology of a circle

at a very small radius (figure 3). For this purpose, we use what is known as the method

of images, which will be explained in the following paragraph. In section 3.2 we will argue

that if the potential is weak, a lower bound is present in the energy spectrum. For small

compactification radii, we can treat the compactified dimension as a perturbation. We will

solve the Schrödinger equation and give energy eigenvalues in second order perturbation

theory.

Figure 3: An additional curled-up dimension is represented by a circle located at each
point of the three-dimensional space.

Finally, we will use a trial-function to show that if the attractive potential is suffi-

ciently strong, then the energy spectrum is continuous and extends from zero to minus

infinity. Thus, as in the strong infinite case, the hydrogen atom is not stable.

3.1 Method of images

Method of images is the best way to tackle the calculations in problems concerning extra

compactified dimensions. What one in principle does, is to unroll the curled-up dimension

to get an infinite space repeating itself with a period of 2πR, where R is the compacti-

fication radius. To calculate the force that one particle ’feels’ from some other particle,
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2πR

r

image

image

image

image

1st particle 2nd particle

Figure 4: To calculate the force between two particles, the method of images makes it
easier. The basic idea is to unroll the curled-up dimension to get an infinite space that
repeats itself with a period of 2πR. (Redrawn according to [29].)

we just have to sum up the expressions for the force it ’feels’ from all the ’images’ of the

other particle (figure 4).

3.2 Lower bound in the energy spectrum

In this paragraph we shall argue that there is a lower bound present in the energy spec-

trum, i.e. there can be no states with energy lower than a certain value EB . We will base

our proof on the result of paragraph 2.1.2. There, we have found that if the parameter ν2,

corresponding to the strength of the potential, takes values from the interval 0 ≤ ν2 < 1

(the weak case), then the system has no negative energy levels.

First, suppose that we are given two systems described by the Hamiltonians Ĥ1 =

T + V1, Ĥ2 = T + V2. Let the mean values of energy in some state |ψ〉 be 〈ψ|Ĥ1|ψ〉 = E1

and 〈ψ|Ĥ2|ψ〉 = E2, respectively. If V1 > V2, then

E1 − E2 = 〈ψ|Ĥ1|ψ〉 − 〈ψ|Ĥ2|ψ〉 = 〈ψ|V1|ψ〉 − 〈ψ|V2|ψ〉 > 0, (3.1)
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since

〈ψ|V1|ψ〉 − 〈ψ|V2|ψ〉 = 〈ψ|V1 − V2|ψ〉 =

∫

ψ∗(V1 − V2)ψ =

∫

|ψ|2(V1 − V2) > 0. (3.2)

Thus, we have E1 > E2 and we can apply this result to show that there exists a lower

bound in the energy spectrum.

Let us consider an artificial system, which is periodic in the w-direction. For any value

of n ∈ Z, the potential Vart of this system is for w from the interval |w − 2πRn| ≤ πR

given by

Vart(r, w) = − e2

r2 + (w − 2πRn)2
, (3.3)

where the coordinate r stands, unlike section 2, only for (x2 + y2 + z2)1/2, i.e. it is the

ordinary distance in our three-dimensional space. In other words, we ”cut out” a part

of the shape of the potential, corresponding to the hydrogen atom in four-dimensional

infinite space (equation (2.5)), and make its periodic copies, putting them successively

one behind another in the w-direction (figure 5). The cutout has the width of 2πR

and is symmetric with respect to the plane perpendicular to the w-axis and running

through the origin. This potential, of course, does not correspond to the real potential

(equation (3.14)) of the compactified space (the dot-dashed curve in the figure), which

results from including the potential

Vanti(r, w) = −
∑

n 6=0

e2

r2 + (w − 2πRn)2
. (3.4)

of the other images of the nucleus. In the following, we will refer to the inclusion of the

potential Vanti(r, w) to the ”single-nucleus potential” as antiscreening.

Now we come to the crucial point. As we know that there are no states with negative

energy in the weak infinite case, we make a reasonable assumption that our artificial

system, resulting from copying the parts of the original one, does not have negative

energy levels either. The main idea of the remaining proof, schematically illustrated

in figure 5, is as follows: The antiscreening at the origin is −e2/12R2 (see (3.12)) and

increases towards the boundary of the individual regions, where it reaches its maximum
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value 3

EM = − e2

R2

(

1

4
− 1

π2

)

. (3.5)

To calculate this value, we take the limit r → 0, w → ±πR in equation (3.14) (next para-

graph). Consequently, if we shift down the shape of the potential energy corresponding to

the artificial system about the value of EM , the resulting potential will lie below the real

potential (in the figure the dot-dashed line). Thus, according to (3.2), the real system

can have no energy levels below EM . Using similar arguments it can be proved that the

−πR 0 πR 2πR 3πR

w
EB

V (r, w)

Vanti

Vart

Vart − EM

Vreal EM

Figure 5: Shape of the potential energy, corresponding to the artificial system (upper
solid line) and the real system (dot-dashed line) Vart, Vreal, respectively. The borders
between individual cutouts of the infinite 4-dim potential are indicated by vertical dashed
lines. The bottom solid curve represents the artificial potential Vart shifted about the
value of EM , which corresponds to the maximum antiscreening. Because the maximum
antiscreening is at the boundaries, the artificial potential Vart matches the real potential
Vreal at the points w = (2n + 1)πR, where n ∈ Z. However, as we depart further from
these planes, the difference between these two potentials becomes larger and reaches its
maximum value EB − EM at the center (points w = 2πnR, n ∈ Z).

3As seen from (3.4), the maximum value lies on the w-axis. For, as we depart from the w-axis, all
terms in (3.4) are decreasing and the antiscreening becomes smaller.
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lower bound lies actually higher and corresponds to the level of antiscreening at the origin

(see (3.12)). We conclude that

EB = −e2/12R2. (3.6)

In the following sections we shall calculate, by means of perturbation theory, the

energy levels of the hydrogen atom (in the weak case) and we will see that the energy of

the ground state, i.e. the lowest level, does not violate this bound.

3.3 Solution of the radial equation

We consider two charged particles in a space with the ordinary three extended spatial

dimensions and one extra compactified dimension with radius R. Let us again start with

the Schrödinger equation:

(

−1

κ
∇2 + V (r, w)

)

Ψ(r, w) = EΨ(r, w). (3.7)

Since we now have a system with ”cylindrical” symmetry, it is appropriate to introduce

the following coordinate system:

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ,

w = w,

(3.8)

where w is the coordinate along the compactified spatial dimension (figure 6). The Lapla-

cian operator is now given by (see appendix A)

∇2 =
∂2

∂r2
+

2

r

∂

∂r
− l̂2

r2
+

∂2

∂w2
, (3.9)

where

l̂2 = −
[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

]

(3.10)

is the three-dimensional angular momentum operator.

Potential energy consist of two terms. The first one is due to the interaction of the
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Figure 6: Coordinate system: the protons are 2πR apart on the w-axis and r is the
distance to the w-axis.

electron with the nucleus and its images:

V (r, w) = −
∞
∑

n=−∞

e2

r2 + (w − 2πRn)2
. (3.11)

The second part, which is merely a constant factor shifting the level of the potential

energy, is the interaction energy between electron and its images

V ′ =
∞
∑

n=−∞
n 6=0

e2

(2πRn)2
=

2e2

(2πR)2

∞
∑

n=1

1

n2
=

2e2

(2πR)2
ζ(2) =

e2

12R2
, (3.12)

where ζ(2) = π2/6 is the Riemann zeta function. We have, of course, omitted the term

with n = 0 representing self interaction. Thus, our Hamiltonian Ĥ is given by

Ĥ =
1

κ

(

∂2

∂r2
+

2

r

∂

∂r
− l̂2

r2
+

∂2

∂w2

)

−
∞
∑

n=−∞

e2

r2 + (w − 2πRn)2
. (3.13)

Expression (3.11) can be summed up by using the calculus of residues (see appendix C).

The result is:

V (r, w) = − e2

2rR

sinh (r/R)

cosh (r/R) − cos (w/R)
. (3.14)
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Before continuing further, let us have a look at the limiting cases. For r ≪ R and w ≪ R

the lowest-order term is

V (r, w) ≈ − e2

r2 + w2
, (3.15)

and we can see that the behaviour of the potential around the origin is the same as

in the uncompactified case. This is also the reason why the result of the trial function

treatment (paragraph 3.7) is the same as in the infinite case. On the other hand, if r ≫ R,

we get

V (r, w) ≈ − e2

2rR
, (3.16)

which means that the usual three-dimensional behaviour is restored and (3.14) turns

into the common 1/r potential, but with a factor given by the volume R of the extra

dimension. The behaviour of the field is shown schematically in Figure 7.

Figure 7: This picture schematically shows how electromagnetic force behaves in R
1×S1.

At longer distances the field becomes parallel and we get the usual three-dimensional
behaviour. It is obvious that the compactification radius has to be small. Otherwise, we
would observe deviations in the behaviour of electromagnetic force at short distances.

Because the potential is periodic in the w-direction, it can be expanded in a Fourier

series:

V (r, w) =
∑

n

vn(r) einw/R. (3.17)
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The expansion coefficients are given by (appendix D):

vn(r) = − e2

2rR
e−|n|r/R (3.18)

and we have

V (r, w) = − e2

2rR

∞
∑

n=−∞

e−|n|r/R einw/R. (3.19)

Similarly, the wave function must be a periodic function with a period of 2πR. This

implies that it can be written as

Ψ(r, w) =
∑

n

ψn(r) einw/R . (3.20)

Inserting (3.17) and (3.20) into the Schrödinger equation (3.7), we obtain:

∇2

(

∑

n

ψn(r) einw/R

)

+ κ

(

E −
∑

m

vm(r) eimw/R

)

∑

n

ψn(r) einw/R = 0. (3.21)

Furthermore, using the explicit form of Laplacian (3.9) and letting the w-part act on the

wave function, equation (3.21) becomes

∑

n

einw/R

[

∂2

∂r2
+

2

r

∂

∂r
+
l̂2

r2
− n2

R2
+ κ

(

E −
∑

m

vm(r) eimw/R

)]

ψn(r) = 0. (3.22)

Making the Ansatz ψn(r) = Rn(r)Yn(θ, φ), we get

∑

n

einw/R

[

Yn(θ, φ)

(

∂2

∂r2
+

2

r

∂

∂r
− n2

R2
+ κE − κ

∑

m

vm(r) eimw/R

)

Rn(r)

+
Rn(r)

r2
l̂2 Yn(θ, φ)

]

= 0 (3.23)

For spherically symmetric solutions, we can separate the angular variables. We obtain

the following radial equation:

∑

n

einw/R

[

d2

dr2
+

2

r

d

dr
− n2

R2
+ κE − κ

∑

m

vm(r) eimw/R

]

Rn(r) = 0. (3.24)

Multiplying (3.24) by exp (−ikw/R) and integrating over the range 0 ≤ w ≤ 2πR, to-
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gether with

∫ 2πR

0
ei(n−k)w/Rdw = 2πR δn,k and

∫ 2πR

0
ei(n−k+m)w/Rdw = 2πR δn−k,m (3.25)

yields

(

d2

dr2
+

2

r

d

dr
− k2

R2
+ κE

)

Rk(r) − κ
∑

n

vk−n(r)Rn(r) = 0. (3.26)

This is a set of coupled differential equations. Each Fourier component of the radial wave

function is determined by an infinite set of Fourier components of the potential. To find

the energy eigenvalues, we apply perturbation theory. We split the Hamiltonian into two

time-independent parts

Ĥ = Ĥ0 + Ĥp, (3.27)

where the unperturbed system is considered to be described by the Hamiltonian

Ĥ0 =
1

κ
∇2 + v0(r), (3.28)

i.e. we take into account only the zero-th component of the Fourier expansion of the

potential. This system can be solved exactly. The remaining terms of the Fourier series

are regarded as a perturbation:

Ĥp = − e2

2rR

∞
∑

n=−∞
n 6=0

e−|n|r/Re−inw/R. (3.29)

3.4 Discrete spectrum of the unperturbed Hamiltonian

Considering only the unperturbed system, equation (3.26) takes the following simple form:

d2R
(0)
k (r)

dr2
+

dR
(0)
k (r)

dr
+

(

κE − k2

R2
+
κe2

2rR

)

R
(0)
k (r) = 0. (3.30)

This is nothing but the radial part of the three-dimensional Schrödinger equation for the

hydrogen atom - apart from a constant factor −k2/R2. Through the use of dimensionless

abbreviations

ρ = αr with α2 = 4

(

−κE +
k2

R2

)

, E < 0, (3.31)
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we obtain

d2χ
(0)
k (ρ)

dρ2
+

2

ρ

dχ
(0)
k (ρ)

dρ
+

(

−1

4
+
σ

ρ

)

χ
(0)
k (ρ) = 0 , (3.32)

where we have used the notation

σ =
1

α

κe2

2R
and χ

(0)
k (ρ) = R

(0)
k (ρ/α). (3.33)

A comparison of equation (3.32) with the associated Laguerre differential equation yields

the following solution:

χ
(0)
k (ρ) = e−ρ/2 L1

σ−1 (ρ) . (3.34)

We must now restrict the parameter σ by requiring it to be a positive integer n:4

σ ≡ n =
1

α

κe2

2R
. (3.35)

This is necessary, since, as we know from the standard solution of the hydrogen atom,

the Laguerre function of non-integral n would diverge as ρneρ. This restriction on σ, im-

posed by our boundary condition, leads to the quantization of energy. From the previous

equation it follows that

αn =
κe2

2R

1

n

. (3.36)

Substituting (3.36) into (3.31) gives us the spectrum of energy eigenvalues:

E
(0)
n,k = − κe4

16R2

1

n
2

+
1

κ

k2

R2
, n ∈ N, k ∈ Z. (3.37)

Turning back to the radial function R
(0)
k (r), the solution to (3.30) is given by

R
(0)
k (r) = e−αnr/2 L1

n−1 (αnr) . (3.38)

Thus, the spherically symmetric solutions corresponding to the unperturbed Hamiltonian

are given by

ψ
(0)
n,k(r, w) = N (n, k)L1

n−1 (αnr) e
−αnr/2 eikw/R, (3.39)

4The quantum number n will be typeset with another font in order to avoid confusion with n, used for
labeling the Fourier components.
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with N (n, k) being a normalization factor:

N (n, k) =
α

3/2
n√

8π2R

1

n

. (3.40)

Before we turn our attention to perturbation theory, we check whether the expected

energy bound EB = −e2/12R2 (paragraph 3.2) is satisfied. Taking the ratio of the energy

of the lowest state, the ground state E
(0)
1,0 , to the bound EB (equation (3.6)) yields

E
(0)
1,0

EB
=

3

4
κe2 =

3

4
(1 − ν2). (3.41)

Since 0 ≤ ν2 < 1 in the weak case (section 2), the ground state energy lies within

three-fourths of the bound EB , depending on the strength of the potential.

3.5 Perturbation theory

In this section we shall use the time-independent perturbation theory to calculate the

corrections to the energy eigenvalues.

3.5.1 First-order correction

To determine the first-order correction to the eigenvalue E
(0)
n,k, we need to calculate

E
(1)
n,k = 〈ψ(0)

n,k|Ĥp|ψ(0)
n,k〉. (3.42)

The insertion of (3.29) and (3.39) yields the energy to first order perturbation:

E
(1)
n,k = −4πe2

2R
N 2(n, k)

∫ ∞

0
r
[

L1
n−1 (αn)

]2
∞
∑

n=−∞
n 6=0

e−(|n|/R+αn )rdr

∫ πR

−πR
e−inw/R dw, (3.43)

where the integration over θ, φ has been carried out. However, inspection shows that the

integral over w produces zero (since n 6= 0) and the first-order correction always vanishes.

Thus, we have to use second order perturbation theory.
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3.5.2 Second-order correction

In the second approximation, perturbation theory gives:

E
(2)
n,k =

∑

(n′,k′)6=(n,k)

∣

∣

∣
〈ψ(0)

n
′,k′ |Ĥp|ψ(0)

n,k〉
∣

∣

∣

2

E
(0)
n,k − E

(0)
n
′,k′

. (3.44)

Using (3.29) and (3.39), we find for the matrix elements in (3.44):

〈ψ(0)
n
′,k′ |Ĥp|ψ(0)

n,k〉 = −(2πe)2N (n)N (n′)

×
∫ ∞

0
re

−
“

|k−k′|
R

+
αn+α

n
′

2

”

r
L1

n−1 (αnr)L
1
n
′−1 (αn

′r) dr, k 6= k′, (3.45)

where we have used the fact that

∞
∑

n=−∞
n 6=0

e|n|r/R

∫ πR

−πR
ei(n+k−k′)w/Rdw

= 2πR
∞
∑

n=−∞
n 6=0

e|n|r/Rδ(n + k − k′) = 2πR e|k−k′|r/R, k 6= k′. (3.46)

Evaluating the integral in (3.45), we obtain ([18], p. 858):

〈ψ(0)
n
′,k′ |Ĥp|ψ(0)

n,k〉 = −(2πe)2N (n)N (n′)
n + n

′

(n − 1)!(n′ − 1)!

(b− αn)
n−1(b− αn

′)n
′−1

bn+n
′

× F

[

−n + 1,−n
′ + 1,−n − n

′ + 1;
b(b− αn − αn

′)

(b− αn)(b− αn
′)

]

, k 6= k′, (3.47)

where b ≡ |k−k′|
R +

α1+α
n
′

2 . Obviously, it is not easy to evaluate the sum in (3.44). For

the ground state (n, k) = (1, 0), however, (3.44) reduces to

E
(2)
1,0 =

∑

(n′,k′)6=(1,0)

∣

∣

∣
〈ψ(0)

n
′,k′ |Ĥp|ψ(0)

1,0〉
∣

∣

∣

2

E
(0)
1,0 − E

(0)
n
′,k′

. (3.48)

We note that all terms in (3.48) are negative, since E
(0)
n,k corresponds to the lowest value

of energy. Thus, the second-order correction to the energy of the ground state is always
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negative. Thus, equation (3.45) has a simpler form

〈ψ(0)
n
′,k′|Ĥp|ψ(0)

1,0〉 = −2(2πe)2N (1)N (n′)

∫ ∞

0
re

−
“

k′

R
+

α1+α
n
′

2

”

r
L1

n
′−1 (αn

′r) dr, (3.49)

where k′ ∈ N. Expressing the Laguerre polynomials in terms of confluent hypergeometric

functions ([7], p. 857)

L1
n
′−1 (αn

′r) = n
′ F (−n

′ + 1, 2;αn
′r), (3.50)

enables us to make use of the following integral ([24], p. 666):

∫ ∞

0
e−bxxγ+p−1 F (a, γ; kx)dx = (−1)p Γ(γ)

dp

dbp
[ba−γ(b− c)−a], (3.51)

with b ≡ k′/R + (α1 + αn
′)/2, a ≡ −n

′ + 1, γ ≡ 2, p ≡ 0 and c ≡ αn
′ . Thus, (3.49) can

be expressed in terms of elementary functions:

〈ψ(0)
n
′,k′ |Ĥp|ψ(0)

1,0〉 = −2(2πe)2N (1)N (n′)n′b−n
′−1(b− αn

′)n
′−1

= −2(2πe)2N (1)N (n′)n′R2

[

λ2

(

1 +
1

n′

)

+ k′
]−n

′−1 [

λ2

(

1 − 1

n′

)

+ k′
]

n
′−1

(3.52)

where λ2 ≡ κe2. From (3.40) it follows that

N (1)N (n′) =
λ6

8π2R4

1

n
′5/2

. (3.53)

Next, from (3.37) we have

E
(0)
1,0 − E

(0)
n
′,k′ = − 1

κR2

[

λ4

16

(

1 − 1

n
′2

)

+ k′2
]

, (3.54)

and thus, inserting (3.52), (3.53) and (3.54) into (3.48), we get finally

E
(2)
1,0 =

∑

n
′>1,k′>0

∣

∣

∣
〈ψ(0)

n
′,k′ |Ĥp|ψ(0)

1,0〉
∣

∣

∣

2

E
(0)
1,0 − E

(0)
n
′,k′

= E
(0)
1,0

4λ12

π2

∑

n
′>1,k′>0

1

n
′3
[

λ4

16

(

1 − 1
n
′2

)

+ k′2
]

[

λ2
(

1 − 1
n′

)

+ k′
]

n
′−1

[

λ2
(

1 + 1
n′

)

+ k′
]

n
′+1

. (3.55)
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We now take the limit of small λ2 = κe2, corresponding to a weak potential. Another

way of interpreting this limit is the following. By equating the expression (3.36) for

energy eigenvalues of the unperturbed Hamiltonian to the energy of the three-dimensional

hydrogen atom

En = −me
4
3d

2~2

1

n2
, (3.56)

we find that the four-dimensional charge is related to the three-dimensional by e2 = 2Re23D

and consequently:

λ2 = 2Rκe23D. (3.57)

From the last equation we may develop the physical interpretation that small λ2 cor-

responds to a limit of small compactification radii R. Taking this limit, (3.55) reduces

to

E
(2)
1,0 ≈ E

(0)
1,0

4λ12

π2

∑

n
′>1

1

n
′3

∑

k′>0

1

k′4
= E

(0)
1,0

4λ12

π2
[ζ(3) − 1] ζ(4), (3.58)

where ζ(3) and ζ(4) are the Riemann zeta functions. 5 Since ζ(3) ≈ 1.20 and ζ(4) = π4/90,

we have

E
(2)
1,0 ≈ 0.18λ12E

(0)
1,0 . (3.59)

Taking again the ratio of the energy of the lowest state, the ground state E1,0, to the

bound EB yields (cf. (3.41)):

E
(0)
1,0 + E

(2)
1,0

EB
≈ 0.75 + 0.18λ12. (3.60)

Because λ2 = 1− ν2 lies within 〈0, 1) in the weak case, the ground state energy to second

order also does not violate the energy bound EB = −e2/12R2 (paragraph 3.2).6

5ζ(3) is also called the Apéry’s constant.
6Actually, we take the limit of small λ2. Consequently, it makes no sense to think of E

(0)
1,0 +E

(2)
1,0/EB ≈

0.75 + 0.18 = 0.93 as an upper limit.
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3.6 Green’s function method

To calculate the higher-order corrections, the Green’s function method is very useful.

Here we limit ourselves to show how to use this method in our problem.

Let us return to equation (3.26) and rewrite it as

(

d2

dr2
+

2

r

d

dr
− k2

R2
+ κE +

κe2

2rR

)

Rk(r) = κ
∑

n 6=k

vk−n(r)Rn(r), (3.61)

where we have inserted v0(r) = −e2/2rR. Assuming the coefficients vk−n to be small, we

can write

R
(1)
k (r) = κ

∑

n 6=k

∫

gl(r, r
′; b)vk−n(r′)R

(0)
k (r)r′2dr′. (3.62)

Thus, it remains for us to find the corresponding Green’s function. The defining equation

for the radial part gl(r, r
′; b) of the Green’s function is (cf. [30])

(

d2

dr2
+

2

r

d

dr
+

2

ar
− 1

b2a2

)

gl(r, r
′; b) = −κδ(r − r′)

rr′
, (3.63)

where we have written

1

b2a2
= −κE +

k2

R2
, with a =

4R

κe2
. (3.64)

The imposed boundary conditions are

lim
r→r′

rgl(r, r
′; b) = 0 and rgl(r, r

′; b) ∈ L2(R). (3.65)

It is possible to solve the differential equation (3.63) explicitly. The solution (for a more

general equation with l 6= 0) is given by [30]:

gl(r, r
′; b) =

2m

~2
(

2

ab
)2l+1(rr′)le−(r+r′)/ab

×
∞
∑

m=0

m!

(2l + 1 +m)!(l + 1 +m− b)
L2l+1

m

(

2r

ab

)

L2l+1
m

(

2r′

ab

)

, (3.66)

where the functions L2l+1
m are the associated Laguerre polynomials. Since we are now

interested only in the spherically symmetric solutions (l = 0), the radial Green’s func-
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tion (3.66) reads

gl(r, r
′; b) =

2m

~2

2

ab
e−(r+r′)/ab ×

∞
∑

m=0

m!

(1 +m)!(1 +m− b)
L1

m

(

2r

ab

)

L1
m

(

2r′

ab

)

. (3.67)

It is worth noting (cf. [30], p. 98) that the poles n ≡ b = 1 +m of the Green’s function

correspond to the energy eigenvalues we have found. Indeed, (3.64) gives:

E
(0)
n,k = − 1

κa2
n

2
+

1

κ

k2

R2
, (3.68)

which is the discrete energy spectrum (3.37) of the unperturbed Hamiltonian we have

calculated. Now that we know the Green’s function, we can insert (3.67) into the expres-

sion (3.62) and get the first-order correction to the unperturbed radial functions R
(0)
k (r).

The results will be presented elsewhere.

3.7 Trial function

In this paragraph we shall show, with the aid of a reasonable trial function, that the

energy of a system described by the Hamiltonian (3.13) can take negative eigenvalues,

which are arbitrarily large in absolute value, i.e. the continuous spectrum is unbounded

from below. Namely, we want to show that

lim
α→∞

〈E〉 = −∞, (3.69)

where

〈E〉 =
〈ψtrial|Ĥ |ψtrial〉
〈ψtrial|ψtrial〉

(3.70)

is the mean value of energy belonging to a system described by the trial function

ψtrial(r, w) =

∞
∑

n=−∞

rp |w − 2πRn|q e−α[r2+(w−2πRn)2], (3.71)

which is real, always positive and, of course, periodic in the w-direction, as required. Here

p > −1/2 and q > 1/2 are real numbers. As will be seen later, this conditions follows

from the requirement that the integrals in (3.70) be convergent.

Let us split the trial function ψtrial(r, w) into two parts ψ1(r, w) and ψ2(r, w), where

ψ1(r, w) ≡ rp|w|qe−α(r2+w2) (3.72)
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and

ψq
2(r, w) ≡ rpe−αr2

∞
∑

n=−∞
n 6=0

|w − 2πRn|q e−α(w−2πRn)2 . (3.73)

The superscript q in (3.73) corresponds to the power of |w−2πRn|. 7 In the following, we

shall see that for α(πR)2 ≫ 1 the chief part in the expressions present in (3.70) is played

by terms containing only ψ1(r, w). The remaining terms will be shown to be exponentially

small. Hence, we can write:

〈E〉 =
〈ψtrial|Ĥ |ψtrial〉
〈ψtrial|ψtrial〉

=
〈ψ1|Ĥ |ψ1〉 +R(α)

〈ψ1|ψ1〉 +R(α)
, (3.74)

where in the limit α→ ∞ the remainder R(α) vanishes.

First of all, we note that the sum present in (3.73) has, for w ∈ 〈−πR, πR〉, an upper

bound given by

0 ≤
∞
∑

n=−∞
n 6=0

|w − 2πRn|q e−α(w−2πRn)2 ≤ Ce−α(2πR)2 , (3.75)

where C is a finite positive number. With zero, as an obvious lower bound, it is clear

that this series must converge. Indeed, for w ∈ 〈−πR, πR〉, we may write

∞
∑

n=−∞
n 6=0

|w − 2πRn|q e−α(w−2πRn)2

≤
∞
∑

n=−∞
n 6=0

(πR)q(2|n| + 1)qe−α(πR)2(2|n|−1)2 = 2
∑

n>0

(πR)q(2n + 1)qe−α(πR)2(2n−1)2

= e−α(2πR)22
∑

n>0

(πR)q(2n+ 1)qe−α(πR)2[(2n+1)2−4(2n+1)], (3.76)

where the exponent has been rewritten as (2n−1)2 = (2n+1−2)2 = (2n+1)2−4(2n+1)+4.

The last sum in (3.76) is a convergent series, which can be easily verified. For instance,

by using the l’Hôpital’s rule for indeterminate forms, the Cauchy ratio test gives us

lim
n→∞

=
an+1

an
= 0, (3.77)

7Later, we will make use of this notation.
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which implies convergence. Thus, we conclude that for w taking values from 〈−πR, πR〉
it holds:

0 ≤ ψq
2(r, w) ≤ φ(r), (3.78)

where

φ(r) ≡ Ce−α(2πR)2rpe−αr2
, (3.79)

with C being a finite positive number.

3.7.1 Normalization

Using this result, we now proceed in the spirit of paragraph 2.2. First, we shall calculate

the normalization (recall that ψ1 and ψ2 are real functions):

〈ψtrial|ψtrial〉 = 〈ψ1|ψ1〉 + 2〈ψ1|ψ2〉 + 〈ψ2|ψ2〉. (3.80)

Using (3.72), the first term is given by (we drop the pre-factors resulting from the inte-

gration over the angular variables):

〈ψ1|ψ1〉 =

∫ ∞

0
r2p+2e−2αr2

dr

∫ πR

−πR
w2qe−2αw2

dw

= 2

∫ ∞

0
r2p+2e−2αr2

dr

∫ ∞

0
w2qe−2αw2

dw −R(α), (3.81)

where we extended the ranges of integration over z to infinity, for the integrand is essen-

tially zero when z departs appreciably from the origin. More precisely, the remainder

R(α) = 2

∫ ∞

πR
w2qe−2αw2

dw, (3.82)

resulting from changing the ranges of integration, is an exponentially small quantity

(see appendix E) and thus, in the limit α → ∞, does not contribute. Making use of the

formula 8

∫ ∞

0
xνe−ax2

=
Γ
(

ν+1
2

)

2a
ν+1
2

dx, a > 0, ν > −1 , (3.83)

8This formula can be easily verified substituting x2 = t and applying the definition of the gamma
function.



32 3 COMPACTIFIED EXTRA DIMENSION

integral (3.81) becomes

〈ψ1|ψ1〉 = 2
Γ
(

2p+3
2

)

2(2α)
2p+3

2

Γ
(

2q+1
2

)

2(2α)
2q+1

2

−R(α). (3.84)

Hence, it remains for us to show that the remaining terms in (3.80) are exponentially

small quantities. Employing (3.78), we get the inequality

0 ≤ 〈ψ1|ψ2〉 ≤ 〈ψ1|φ〉 = Ce−α(2πR)2
∫ ∞

0
r2p+2e−2αr2

dr

∫ πR

−πR
|w|qe−αw2

dw

≤ 2Ce−α(2πR)2
∫ ∞

0
r2p+2e−2αr2

dr

∫ ∞

0
|w|qe−αw2

dw −R(α)

= Ce−α(2πR)2
Γ
(

2p+3
2

)

Γ
(

q+1
2

)

2(2α)p+q/2+2
−R(α), (3.85)

where we again used the formula (3.83). Finally, the last term in (3.80) is

0 ≤ 〈ψ2|ψ2〉 ≤ 〈φ|φ〉

= C2e−2α(2πR)2
∫ ∞

0
r2p+2e−2αr2

dr

∫ πR

−πR
dw = 2πRC2e−2α(2πR)2

Γ
(

2p+3
2

)

2(2α)
2p+1

2

. (3.86)

Summing up our results, we have

〈ψtrial|ψtrial〉 =
Γ(p+ 3/2)Γ(q + 1/2)

2(2α)p+q+2
+ rem, (3.87)

where ”rem” stands for all exponentially small quantities.

3.7.2 Mean value of the kinetic energy

Having determined the normalization, we now proceed to calculate the next term appear-

ing in (3.70), corresponding to kinetic energy:

〈ψtrial|∇2|ψtrial〉 = 〈ψ1|∇2|ψ1〉 + 〈ψ1|∇2|ψ2〉 + 〈ψ2|∇2|ψ1〉 + 〈ψ2|∇2|ψ2〉. (3.88)

Using (3.72), (3.73) and (3.9) we find for the Laplacian of ψ1 and ψ2:

∇2ψ1(r, w) =

[

p(p+ 1)

r2
+
q(q − 1)

w2
− 4α(p + q + 2) + 4α2(r2 + w2)

]

ψ1(r, w) (3.89)



3.7 Trial function 33

and

∇2ψ2(r, w) = rpe−αr2
∞
∑

n=−∞
n 6=0

[

p(p+ 1)

r2
+

q(q − 1)

(w − 2πRn)2

− 4α(p + q + 2) + 4α2r2 + 4α2(w − 2πRn)2

]

|w − 2πRn|q e−α(w−2πRn)2

=

(

p(p + 1)

r2
− 4α(p + q + 2) + 4α2r2

)

ψ2(r, w) + q(q − 1)ψq−2
2 (r, w) + 4α2ψq+2

2 (r, w),

(3.90)

where we have used the notation introduced in (3.73). With (3.72) and (3.89), the first

summand in (3.88) becomes

〈ψ1|∇2|ψ1〉 =

∫ ∞

0

∫ πR

−πR

[

p(p+ 1)

r2
+
q(q − 1)

w2

−4α(p + q + 2) + 4α2(r2 + w2)
]

r2p+2w2qe−2α(r2+w2)dw dr. (3.91)

Evaluation of this integral is much the same as that of 〈ψ1|ψ1〉. Again, we extend the

ranges of integration over w to infinity, since the remainder R(α), resulting from changing

the ranges of integration, is an exponentially small quantity and thus in the limit α→ ∞
does not contribute (again, see appendix E). Integration by employing (3.83) gives finally:

〈ψ1|∇2|ψ1〉 = −
Γ
(

2p+1
2

)

Γ
(

2q−1
2

)

23(2α)p+q+1

[

(2p +
3

2
)(2q − 1) + (2q − 1

2
)(2p + 1)

]

+ rem. (3.92)

As in section 3.7.1, it remains for us to show that the terms 〈ψ1|∇2|ψ2〉, 〈ψ2|∇2|ψ1〉 and

〈ψ2|∇2|ψ2〉 are exponentially small quantities. Using (3.90), the first term is given by:

〈ψ1|∇2|ψ2〉 =

∫ ∞

0

∫ πR

−πR
r2ψ1(r, w)

[(

p(p+ 1)

r2
− 4α(p + q + 2) + 4α2r2

)

ψ2(r, w)

+ q(q − 1)ψq−2
2 (r, w) + 4α2ψq+2

2 (r, w)

]

dw dr. (3.93)

Inserting (3.72), (3.73), together with using the result (3.78), we find out that the result

of integration consists of terms similar to that appearing in (3.85). The same argument

holds for 〈ψ2|∇2|ψ1〉 and 〈ψ2|∇2|ψ2〉.
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3.7.3 Mean value of the potential energy

Let us move forward to calculate the last term appearing in (3.70) and corresponding to

potential energy. Rewriting it as

〈ψtrial|
∞
∑

n=−∞

1

r2 + (w − 2πRn)2
|ψtrial〉 =

〈ψtrial|
1

r2 + w2
|ψtrial〉 + 〈ψtrial|

∞
∑

n=−∞
n 6=0

1

r2 + (w − 2πRn)2
|ψtrial〉, (3.94)

the first term is given by

〈ψtrial|
1

r2 + w2
|ψtrial〉 = 〈ψ1|

1

r2 + w2
|ψ1〉 + 2〈ψ1|

1

r2 + w2
|ψ2〉 + 〈ψ2|

1

r2 + w2
|ψ2〉. (3.95)

Again, the main contribution is due to the first summand:

〈ψ1|
1

r2 + w2
|ψ1〉 =

∫ ∞

0

∫ πR

−πR

r2p+2

r2 + w2
w2qe−2α(r2+w2)dwdr. (3.96)

Extending the limits of the w-integration to infinity, we carry out the integration by

transforming to polar coordinates ρ, θ:

〈ψ1|
1

r2 + w2
|ψ1〉 = 2

∫ ∞

0

∫ ∞

0

r2p+2

r2 + w2
w2qe−2α(r2+w2)drdw−R(α)

= 2

∫ ∞

0
ρ2p+2q+1e−2αρ2

dρ

∫ π/2

0
cos2p+2 θ sin2q θdθ −R(α). (3.97)

The remainder R(α) satisfies the following inequality

R(α) = 2

∫ ∞

0

∫ ∞

πR

r2p+2

r2 + w2
w2qe−2α(r2+w2)drdw (3.98)

≤ 2

∫ ∞

0
r2pe−2αr2

dr

∫ ∞

πR
w2qe−2αw2

dw, (3.99)

since 1/(r2 +w2) ≤ 1/r2. The integral over r is a finite number, the other is an exponen-

tially small quantity (appendix E).

Thus, employing (3.83) and the fact that

2

∫ π/2

0
cos2p+2 θ sin2q θd θ ≡ B(p+ 3/2, q + 1/2) =

Γ(p+ 3/2)Γ(q + 1/2)

Γ(p+ q + 2)
. (3.100)
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is the Beta function gives for (3.97):

〈ψ1|
1

r2 + w2
|ψ1〉 =

Γ(p+ 3/2)Γ(q + 1/2)

Γ(p+ q + 2)

Γ(p+ q + 1)

2(2α)p+q+1
−R(α)

=
1

2(2α)p+q+1

Γ(p+ 3/2)Γ(q + 1/2)

p+ q + 1
−R(α). (3.101)

As before, (3.101) is the only surviving term in (3.95) as α→ ∞. Transforming to polar

coordinates, we can follow the reasoning of paragraph 3.7.1.

As for the second term in (3.94), we will make use of the fact that for w ∈ 〈−πR, πR〉
the sum

∞
∑

n=−∞
n 6=0

1

r2 + (w − 2πRn)2
(3.102)

has an upper limit CM given by

CM =
1

R2

(

1

4
− 1

π2

)

(3.103)

and corresponding to the maximum level of antiscreening (see paragraph 3.2). Conse-

quently,

0 ≤ 〈ψtrial|
∞
∑

n=−∞
n 6=0

1

r2 + (w − 2πRn)2
|ψtrial〉 ≤ CM 〈ψtrial|ψtrial〉. (3.104)

Divided by the normalization (3.80), we get a finite contribution to 〈E〉, which is not

essential in our discussion (recall that we want to show (3.69)). In the following, we will

drop this factor.

3.7.4 Mean value of energy

Now we are ready to summarize our results. Inserting (3.87), (3.92) and (3.101) into

(3.70), we obtain:

〈E〉 =
2α

κ

(

2p+ 3/2

2p + 1
+

2q − 1/2

2q − 1
− 1 − ν2

p+ q + 1

)

, (3.105)

where all exponentially decreasing terms (for large α) have been dropped and we have

written, as usual, κe2 = 1−ν2. By inspection of (3.105) we find that for ν2 < −1(1+
√

2)
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the energy can take arbitrarily large negative values as α → ∞. On the other hand, if

0 ≤ ν2 < 1 (the weak case), the right-hand side of (3.105) is always positive and this is

no longer possible. Although we have not showed that limα→∞〈E〉 = −∞ for all ν2 < 0,

we expect that this can be achieved through some other trial function. The reason for

this belief results from the behaviour of potential near the origin - it is the same as in the

infinite case (see (3.15)).

Thus, the fact that hydrogen atom is not stable in the strong case also applies to

spaces with compactified extra dimension.
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4 Summary and Outlook

In this work, we have studied the stability and spectra of the hydrogen atom in spaces

with an extra dimension.

In the first part, we have investigated the case of an extra spatial dimension which

is infinite. Separating the angular part, we have solved the corresponding Schrödinger

equation. The radial equation was identified with the modified Bessel equation with a

parameter ν2, taking all real values. The asymptotic behaviour enabled us to immediately

eliminate one of the solutions, the modified Bessel functions of the first kind. To discuss

the second independent solution, the modified Bessel functions of the second kind, we

have distinguished three cases, according to the value of ν2 - repulsive, weak and strong.

In the repulsive case, the modified Bessel functions of the second kind are not square

integrable and must therefore be rejected. We should mention that the modified Bessel

functions of the first kind might actually correspond to some solution, since we have a

repulsive potential. Nevertheless, we consider here only bound states. In the weak case,

the Hermiticity of Hamiltonian is violated. Thus, we must conclude that there are no

bound states in the repulsive and weak case. These results are in agreement with the

treatment given in paper [19].

The treatment of the strong case is somewhat peculiar and has not yet been clarified.

Namely, we have found that by fixing some (arbitrary) value of energy, it is possible to

construct a sequence (discrete subset) of energy eigenvalues such that the corresponding

wave functions form a set of orthonormal states. To find some interpretation of this

result, one possibility might be a calculation of the probability current to show that the

particle falls to the center. Such a result would correspond to the treatment given in

paragraph 2.2, where we have argued, using a trial function, that there is a continuous

energy spectrum extending to minus infinity. This conclusion is also presented in [19].

This issue, leading to a possibly different picture of the strong case, remains to be

investigated. In any case, we can say that there is no stable hydrogen atom in four-

dimensional spaces, where an infinite additional dimension is present.

After the discussion of infinite spaces, we have approached the study of spaces with

an extra compactified dimension. We have argued that, as a result of compactification, a

lower bound is present in the energy spectrum of the weak case. For small compactification

radii, we can treat the additional dimension as a perturbation. We have solved the

Schrödinger equation and found the energy eigenvalues to second order in perturbation

theory. Energy eigenstates for the unperturbed Hamiltonian were also given.
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In the strong case, we have shown that the result of the trial function treatment (para-

graph 3.7) is the same as in the infinite case. This was to be anticipated, since the

behaviour of the potential around the origin is the same as in the uncompactified case.

Thus, the fact that the hydrogen atom is not stable in the strong case also applies to

spaces with compactified extra dimension.

To summarize our results, we can say that the main goal has been achieved. Namely,

we have found out how the energy spectrum is influenced in the presence of a curled-

up dimension. It should be mentioned, however, that we have used the limit of small

compactification radii for our calculations. The next step would be to give exact energy

eigenvalues for the whole range of the weak case and to calculate, in particular, the

maximum compactification radius that would correspond to the transition between the

weak and the strong case. Thus, the most important issue to address is a more detailed

discussion of the weak case, which was not yet fully understood.
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A Differential Operators in Curvilinear Coordinates

In this appendix, we shall find a general expression for gradient and Laplace operator in

N-dimensional, orthogonal curvilinear coordinates.

A.1 General expressions for gradient and Laplacian

In an arbitrary system of orthogonal curvilinear coordinates u1, u2, . . . uN , the element of

length is

dl2 =

N
∑

i=1

giidu
2
i = h2

1du
2
1 + h2

2du
2
2 + . . .+ h2

Ndu2
N , (A.1)

where the components of the metric gii = h2
i are functions of the coordinates. The volume

element is given by

dV =

N
∏

i=1

√
giidui = h1h2 . . . hNdu1du2 . . . duN . (A.2)

As we shall see below, the general expression for the gradient of a scalar function f has

the form

∇ =

(

1

h1

∂f

∂u1
,

1

h2

∂f

∂u2
, . . . ,

1

hN

∂f

∂uN

)

, (A.3)

and for Laplacian

∇2 =
1

h1h2 . . . hN

∑

cycl

∂

∂ui

(

h1h2 . . . hN

h2
i

∂f

∂ui

)

. (A.4)

Here, the summation is over cyclic interchanges of the suffixes 1,2. . . ,N. An elegant way

to obtain (A.3) and (A.4) is through the use of differential forms. We take advantage of

the Hodge operator ∗, well-known from differential geometry. In terms of this operator,

the Laplacian is given by

∇2 = ∗ d ∗ d, (A.5)

where d denotes differentiation, as usual.
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Let us apply this definition. First, the differential is

df =
∑

i

∂f

∂ui
dui =

∑

i

1

hi

∂f

∂ui
Θi, (A.6)

where Θi = hidu
i are the coframe vectors. Now, since the components df in the coframe

represent the gradient, we already have the expression (A.3). The application of the

Hodge operator gives

∗ df =
∑

i

(−1)i+1 1

hi

∂f

∂ui
Θ1 ∧ . . . ∧ Θi−1 ∧ Θi+1 ∧ . . . ∧ ΘN . (A.7)

Rewriting this expression in terms of frame vectors

∗ df =
∑

i

(−1)i+1h1 . . . hi−1hi+1 . . . hN

hi

∂f

∂ui
du1 ∧ . . . ∧ dui−1 ∧ dui+1 ∧ . . . ∧ duN ,

(A.8)

enables us to apply the exterior derivate:

d ∗ df =
∑

i

∂

∂ui

(

h1 . . . hi−1hi+1 . . . hN

hi

∂f

∂ui

)

du1 ∧ . . . ∧ duN . (A.9)

Again, using the basis of coframe vectors:

d ∗ df =
1

h1h2 . . . hN

∑

i

∂

∂ui

(

h1 . . . hi−1hi+1 . . . hN

hi

∂f

∂ui

)

dΘ1 ∧ . . . ∧ dΘN . (A.10)

According to (A.5), the last step gives

∗d ∗ df =
1

h1h2 . . . hN

∑

i

∂

∂ui

(

h1 . . . hi−1hi+1 . . . hN

hi

∂f

∂ui

)

, (A.11)

which is the desired expression (A.4). In addition, we note that this is a special case of

the more general Laplace-Beltrami operator (e.g. [7], p. 161):

∇2f = |detgij |−1/2 ∂

∂xk

(

glk |detgij |1/2 ∂f

∂xl

)

, (A.12)

where gij are the components of the inverse metric tensor. This operator is an extension of

the Laplace operator to functions defined on Riemannian and pseudo-Riemannian mani-

folds. Since we have a diagonal metric, inserting gij = h2
i δij into (A.12) gives again (A.4).
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A.2 The Laplacian in particular coordinate systems

Here, we express the Laplace operator in the two particular coordinate systems used in

the text. First, we consider the hyperspherical coordinate system:

x1 = r sin θ1 sin θ2 . . . sin θN−2 sin θN−1,

x2 = r sin θ1 sin θ2 . . . sin θN−2 cos θN−1,

x3 = r sin θ1 sin θ2 . . . cos θN−2,

...

xN−1 = r sin θ1 cos θ2,

xN = r cos θ1,

(A.13)

where x1, x2 . . . xN are Cartesian coordinates, r is the hyperradius and φ1, φ2 . . . φN−1 are

the hyperspherical angles, with 0 ≤ θj ≤ π for j = 1, . . . ,N−2, and 0 ≤ θN−1 ≤ π. Thus,

the corresponding coefficients hi are given by

hr = 1

hθ1 = r

hθ2 = r sin θ1

hθ3 = r sin θ1 sin θ2

...

hθN−2
= r sin θ1 sin θ2 . . . sin θN−3

hθN−1
= r sin θ1 sin θ2 . . . sin θN−3 sin θN−2.

(A.14)

Inserting (A.14) into (A.4) produces:

∇2 =
1

rN−1

∂

∂r

(

rN−1 ∂

∂r

)

− L2(N − 1)

r2
, (A.15)

with

L2(N − 1) = −
∑

cycl

1

sin2 θ1 sin2 θ2 . . . sin
2 θi−1

1

sinN−1−i θi

(

∂

∂θi
sinN−1−i θi

∂

∂θi

)

,

(A.16)

where L2(N − 1) is a partial differential operator on the unit sphere SN−1. The sum-

mation is over cyclic interchanges of the suffixes 1, 2 . . . ,N − 1. Alternatively, we can
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rewrite (A.16) as a recursive relation [16]:

L2(N − 1) = − 1

sinN−2 θ1

(

sinN−2 θ1
∂

∂θ1

)

+
1

sin2 θ1
L2(N − 2)

L2(N − 2) = − 1

sinN−3 θ2

(

sinN−3 θ2
∂

∂θ2

)

+
1

sin2 θ2
L2(N − 3)

...

L2(2) = − 1

sin θN−2

∂

∂θN−2

(

sin θN−2
∂

∂θN−2

)

+
1

sin2 θN−2
L2(1)

L2(1) = − ∂2

∂θ2
N−1

.

(A.17)

For the special case of 4-dimensional space with coordinates denoted by r, η, θ, φ, we have

from (A.13) and (A.14):

x = r sin η sin θ cosφ,

y = r sin η sin θ sinφ,

z = r sin η cos θ,

w = r cos η,

(A.18)

and

hr = 1, hθ = r, hφ = r sin η, hw = r sin η sin θ . (A.19)

Again, inserting into (A.17) yields:

∇2 =
∂2

∂r2
+

3

r

∂

∂r
− L2(3)

r2
, (A.20)

where

L2(3) = − 1

sin2 η

[

∂

∂η

(

sin2 η
∂

∂η

)

+
1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

]

(A.21)

is the square of the angular momentum operator on a 3-sphere.



A.2 The Laplacian in particular coordinate systems 43

In section 3, we introduced another system of coordinates:

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

w = w

(A.22)

with

hr = 1, hθ = r, hφ = r sin θ, hw = 1 . (A.23)

thus, the corresponding Laplace operator is:

∇2 =
∂2

∂r2
+

2

r

∂

∂r
− l̂2

r2
+

∂2

∂w2
, (A.24)

where

l̂2 = −
[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

− 1

sin2 θ

∂2

∂φ2

]

. (A.25)
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B Potential of a Point Charge in Higher Dimensions

In this appendix we shall investigate the behaviour of electromagnetic force in an infinite

N -dimensional space. 9 We assume that Gauss’ law for electrostatics is still valid in higher

dimensions. This means that we demand the flux of the field intensity produced by a

point charge, through a surface enclosing this charge, to be independent of the spatial

dimension. The surface integral is then equal to the enclosed charge times some constant.

Potential of a charge distribution ρ(r) is the solution of Poisson’s equation

∆V = −ρ(r). (B.1)

We have ρ(r) = e δ(r), i.e. we consider a point charge e at the origin of our coordinate sys-

tem. Because the field is spherically symmetric, we use hyperspherical coordinates (A.13).

The Laplacian operator is given by (A.15), the delta function δ(r) is in this coordinate

system expressed as:

δ(r) =
1

J(r, φN−1, φN−2 . . . φ1)
δ(r)δ(φN−1)δ(φN−2) . . . δ(φ1), (B.2)

where J ≡ J(r, φN−1, φN−2 . . . φ1) = hρhθ1hθ2 . . . hθN−1
is the Jacobian (see (A.14)) of

the transformation. Hence, the Poisson’s equation (B.1) takes the following form:

1

rN−1

d

dr

(

rN−1 dV (r)

dr

)

= − e

J
δ(r)δ(φN−1)δ(φN−2) . . . δ(φ1). (B.3)

Integrating over the whole space yields the desired expression for potential:

V (r) =











1

SN

1

N − 2

e

rN−2
for N 6= 2

− e

SN
ln r for N = 2

, (B.4)

where SN = 2πN/2/Γ(N/2) is the surface area of a unit sphere in N spatial dimensions.

In the special case of N = 4, we have:

V (r) =
1

8π2

e

r2
. (B.5)

Throughout this text, we drop the pre-factor 1/8π2.

9For discussion of the behaviour of gravitational force in models with extra spatial dimensions see, for
instance, [20, 9, 14].
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C Potential with Compactified Extra Dimension

In section 3 we need to sum up the following series, giving the potential with a compact-

ified extra dimension:

V (r, w) = −
∞
∑

n=−∞

e2

r2 + (w − 2πRn)2
. (C.1)

Here we shall show that the result is:

V (r, w) = − e2

2rR

sinh (r/R)

cosh (r/R) − cos (w/R)
. (C.2)

To prove this assertion, we use the residue theorem. Let us start with the function

f(z) =
cot πz

(a− z)2 + b2
, a, b ∈ R. (C.3)

Its numerator has two singularities at

zI = a+ ib, zII = a− ib, (C.4)

The corresponding residues are:

res f(zI) = lim
z→zI

(z − zI)
cot πz

(a− z)2 + b2
= lim

z→zI

cot πz

z − zII
=

cot π(a+ ib)

2ib
(C.5)

and

res f(zII) = lim
z→zII

(z − zII)
cot πz

(a− z)2 + b2
= lim

z→zII

cot πz

z − zI
= −cot π(a− ib)

2ib
. (C.6)

The denominator has its singularities at

zn = n, n ∈ Z, (C.7)

with the corresponding residues:

res f(zn) = lim
z→zn

(z − zn)
cot πz

(a− z)2 + b2
= lim

z→zn

cos πz

sinπz

z − zn
(a− z)2 + b2

= lim
z→zn

cos πz − πz sinπz

[(a− z)2 + b2]π cos πz + 2(z − a) sinπz
=

1

π[(a− n)2 + b2]
. (C.8)
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By the residue theorem, the sum of all residues must be zero. Hence,

∞
∑

n=−∞

1

(a− n)2 + b2
=
iπ cot π(a+ ib)

2b
− iπ cot π(a− ib)

2b
. (C.9)

Using hyperbolic functions, this expression can be brought into the form:

∞
∑

n=−∞

1

(a− n)2 + b2
=
π

b

sinh (2πb)

cosh (2πb) − cos (2πa)
. (C.10)

We are almost at the end. Rewriting (C.1) as

V (r, w) = −
∞
∑

n=−∞

e2

r2 + (w − 2πRn)2
= − e2

(2πR)2

∞
∑

n=−∞

1
r

2πR + ( w
2πR − n)2

(C.11)

and comparing (C.10) with (C.11) we find that a = w/2πR, b = r/2πR. Thus,

V (r, w) = − e2

2rR

sinh (r/R)

cosh (r/R) − cos (w/R)
, (C.12)

which is already the result (C.2).
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D Fourier Expansion of the Potential

In this appendix we shall be concerned with finding the coefficients of the Fourier expan-

sion of the function:

f(θ) =
1

a− cos θ
=

∞
∑

n=−∞

αne
inθ (a > 1). (D.1)

As f(θ) is an even real function, the coefficients αn must satisfy the condition

αn = α−n. (D.2)

The Fourier coefficient αn is given by:

αn =
1

2π

∫ 2π

0

e−inθ

a− cos θ
dθ. (D.3)

For n ≥ 0, let

z = e−iθ and dz = −ieiθdθ. (D.4)

Then cos z = (z + 1/z)/2 and (D.3) becomes

αn =
i

2π

∫

�

zn

a− (z + 1/z)/2

dz

z
, (D.5)

where we integrate over the unit circle (clockwise). Rearranging (D.5), we obtain

αn = − i

π

∫

�

zn

z2 − 2az + 1
dz =

i

π

∫

	

zn

(z − z1)(z − z2)
dz, (D.6)

where we have changed the orientation of the integration path. The integrand has two

poles of order one:

z1 = a+
√

a2 − 1, z2 = a−
√

a2 − 1. (D.7)

Only the pole at z2 is located inside the unit circle. Then by the residue theorem

αn = 2πi res f(z2), (D.8)
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where

res f(z2) =
i

π
lim

z→z2

zn

(z − z1)
=
i

π

zn
2

(z2 − z1)
= − i

π

(a−
√
a2 − 1)n

2
√
a2 − 1

. (D.9)

The Fourier coefficient αn is thus

αn =
(a−

√
a2 − 1)n√
a2 − 1

. (D.10)

Employing (D.2), the final result is:

1

a− cos θ
=

∞
∑

n=−∞

(a−
√
a2 − 1)|n|√
a2 − 1

einθ . (D.11)

Using this relation for the potential (3.14), we obtain

sinh (r/R)

cosh (r/R) − cos (w/R)
= sinh (r/R)

∞
∑

n=−∞

[cosh (r/R) − sinh (r/R)]|n|

sinh (r/R)
einw/R

=

∞
∑

n=−∞

e−|n|r/R einw/R . (D.12)
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E Incomplete Gamma Function

In the following, we shall estimate the value of the integral

I(p, b, c) ≡
∫ ∞

c
ype−by2

dy (E.1)

for large values of c or, more precisely, for bc2 ≫ 1. Here b, c are positive constants,

p > −1. Substituting by2 = t in (E.1), we obtain

∫ ∞

c
ype−by2

dy =
1

2bp+1/2

∫ ∞

bc2
t

p−1
2 e−tdt . (E.2)

But this is the incomplete gamma function

Γ(a, x) =

∫ ∞

x
e−tta−1dt (E.3)

of arguments a = p + 1/2 and x = bc2. The asymptotic expansion of incomplete gamma

function is as follows ([7], p. 661):

Γ(a, x) = xa−1e−x
∞
∑

n=0

(a− 1)!

(a− 1 − n)!

1

xn
= xa−1e−x

∞
∑

n=0

(−1)n
(n− a)!

(−a)!
1

xn
. (E.4)

Thus, since we have bc2 ≫ 1, the asymptotic expansion of (E.1) is given by

∫ ∞

c
ype−by2

dy =
c2p−1

2b
e−bc2

∞
∑

n=0

(p − 1/2)!

(p − 1/2 − n)!

1

(bc2)n
. (E.5)

We can see that for bc2 ≫ 1, expression (E.1) is an exponentially small quantity.
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[11] W. Büchel. Warum hat der Raum drei Dimensionen? Physikalische Blätter 19, 12,

pp. 547/549, December 1963.

[12] P. Ehrenfest. Welche Rolle spielt die Dreidimensionalität des Raumes in den

Grundgesetzen der Physik? Annalen der Physik, 366:440–446, 1920.

[13] B. R. Fabijonas, D. W. Lozier, and J. M. Rappoport. Algorithms and codes for

the macdonald function: recent progress and comparisons. J. Comput. Appl. Math.,

161(1):179–192, 2003.

[14] E. G. Floratos and G. K. Leontaris. Low scale unification, newton’s law and extra

dimensions. Physics Letters B, 465:95, 1999.



REFERENCES 51

[15] I. M. Freeman. Why is Space Three-Dimensional? Based on W. Büchel: “Warum hat
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[26] G. Nordström. Über die Möglichkeit, das elektromagnetische Feld und das Gravi-

tationsfeld zu vereinigen (On the possibility of a unification of the electromagnetic

and gravitational fields), Physik. Zeitschr. 15 504-506 (1914).

[27] M. Rabinowitz. No stable gravitationally or electrostatically bound atoms in n-space

for n > 3. ArXiv Physics e-prints, February 2003.



52 REFERENCES

[28] N. Shimakura. Partial Differential Operators of Elliptic Type, American Mathemat-

ical Society Providence, Rhode Island. 1992.

[29] Stefan Kowalczyk, Quinten Krijger, Maarten van de Meent, Jorn Mossel, Gerben

Schooneveldt, and Bart Verouden. Constraints on large extra dimensions. University

of Amsterdam, The Netherlands, 2003.

[30] R. A. Swainson and G. W. F. Drake. A unified treatment of the non-relativistic and

relativistic hydrogen atom II: the Green functions . Journal of Physics A Mathemat-

ical General, 24:95–120, January 1991.

[31] Max Tegmark. On the dimensionality of spacetime. Classical and Quantum Gravity,

14:L69, 1997.

[32] Zhao Wei-Qin. Relation between dimension and angular momentum for radially

symmetric potential in n-dimensional space, 2005.

[33] X. L. Yang, S. H. Guo, F. T. Chan, K. W. Wong, and W. Y. Ching. Analytic

solution of a two-dimensional hydrogen atom. i. nonrelativistic theory. Phys. Rev.

A, 43(3):1186–1196, Feb 1991.


